Answer:
4 hoop, disk, sphere
Explanation:
Because
We are given data that
Hoop, disk, sphere have Same mass and radius
So let
And Initial angular velocity, = 0
The Force on each be F
And Time = t
Also let
Radius of each = r
So let's find the inertia shall we!!
I1 = m r² /2
= 0.5 mr² the his is for dis
I2 = m r² for hoop
And
Moment of inertia of sphere wiil be
I3 = (2/5) mr²
= 0.4 mr²
So
ωf = ωi + α t
= 0 + ( τ / I ) t
= ( F r / I ) t
So we can see that
ωf is inversely proportional to moment of inertia.
And so we take the
Order of I ( least to greatest ) :
I3 (sphere) , I1 (disk) , I2 (hoop) , ,
Order of ωf: ( least to greatest)
That of omega xf is the reverse of inertial so
hoop, disk, sphere
Option - 4
Answer:
Yes
Explanation:
It is possible for sedimentary rocks to be converted to igneous rocks. Under conditions of high temperature and pressure, sedimentary rocks can be broken down into igneous rock by melting this rock type.
When the rock is broken down, it forms melt which when cooled and solidifies will form igneous rocks.
Sedimentary rocks are formed from the breaking down of pre-existing rocks through the action of weathering, erosion and sediment transportation. Within a basin, the sediments are compacted and lithified.
When this is subjected to intense pressure and temperature, the rock hardens and might further break down to melt.
The object will sail away in a straight line ... continuing in the same direction it was going when the centripetal force stopped.
Answer:
38.87 m/s
Explanation:
Given that the ball is dropped from a height = 77 m
u = 0 m/s
s = 77 m
a = g = 9.81 m/s²
Applying the expression as:

Applying values as:

<u>The speed with which the ball hit the ground = 38.87 m/s</u>