Answer: F = 2N
Explanation: If a current i is flowing in a wire of length L lying in a region of magnetic field B, then the magnetic force acting on the wire is given by
F = BIL
Please find the attached file for the solution
Answer:
Explanation:
Due to heat energy , metal expands . Formula for linear expansion is as follows .
L = l ( 1 + α Δt )
where L is expanded length , l is original length , α is coefficient of linear expansion and Δt is increase in temperature .
To pass the sphere through the ring , the diameter of both ring and sphere should be same after heating . Let after increase of temperature Δt , their diameter becomes same as L . The linear coefficient of brass and steel are
20 x 10⁻⁶ and 12 x 10⁻⁶ respectively .
For steel sphere ,
L = 25 ( 1 + 12 x 10⁻⁶ Δt )
For brass ring
L = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
25 ( 1 + 12 x 10⁻⁶ Δt ) = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
1.004( 1 + 12 x 10⁻⁶ Δt ) = ( 1 + 20 x 10⁻⁶ Δt )
1.004 + 12.0482 x 10⁻⁶ Δt = 1 + 20 x 10⁻⁶ Δt
.004 = 7.9518 x 10⁻⁶ Δt
Δt = 4000 / 7.9518
= 503⁰C.
final temp = 503 + 15 = 518⁰C .
Answer:
true
Explanation:
I did this unit for science
Static frictional force = ƒs = (Cs) • (Fɴ)
2.26 = (Cs) • m • g
2.26 = (Cs) • (1.85) • (9.8)
Cs = 0.125
kinetic frictional force = ƒκ = (Cκ) • (Fɴ)
1.49 = (Cκ) • m • g
1.49 = (Cκ) • (1.85) • (9.8)
Cκ = 0.0822
Answer:
r = 0.5 m
Explanation:
First we find the angular speed of the ball by using its period:
ω = θ/t
For the time period:
ω = angular speed = ?
θ = angular displacement = 2π rad
t = time period = 0.5 s
Therefore,
ω = 2π rad/0.5 s
ω = 12.56 rad/s
Now, for the radius:
v = rω
r = v/ω
where,
v = linear speed = 6.29 m/s
r = radius = ?
r = (6.29 m/s)/(12.56 rad/s)
<u>r = 0.5 m</u>