true gas molicules bounce off one another much faster liquid just slides
Answer:200/3 M which is approximately equal to 66.6667 M
Explanation:Molarity is defined as the number of moles of solute per liter of solution.
It can be calculated as follows:

We are given that:
number of moles of solute = 8 moles
volume of solution = 120 ml = 0.12 liters
Substitute with the givens in the above equation to get the molarity as follows:
molarity =

Hope this helps :)
Answer:
Objects with the same charge repel each other, and objects with opposite charges attract each other.
Explanation:
The Coulomb law states that opposite charges attract each other and like charges repel each other. That means two positive charges repel each other but a positive and a negative charge attract.
__________________________________________________
Titanium is known as a strategic metal because it is one of the most abundant items on Earth! Also, it is used to build structures, such as space crafts, aircrafts, etc.
__________________________________________________
Hope this helps!
Answer:
CH3CH2NH3+/CH3CH2NH2 would have the largest pKa
Explanation:
To answer this question we must know Kb of CH3CH2NH2 is 5.6x10⁻⁴, and for C6H5NH2 is 4.0x10⁻¹⁰. And the CH3CH2NH3+ and C6H5NH3+ are related with these substances because are their conjugate base. That means:
pKa of CH3CH2NH3+ = CH3CH2NH2; C6H5NH3+ = C6H5NH2
Also, Kw / Kb = Ka
Thus:
pKa of CH3CH2NH3+/CH3CH2NH2 is:
Kw / kb = Ka = 1.79x10⁻¹¹
-log Ka = pKa
pKa = 10.75
pKa of C6H5NH3+/ C6H5NH2 is:
Kw / kb = Ka = 2.5x10⁻⁵
-log Ka = pKa
pKa = 4.6
That means CH3CH2NH3+/CH3CH2NH2 would have the largest pKa