Answer:
N = 19.6 N
Explanation:
Given that,
Mass of a block, m = 2000 g
1 kg = 1000 g
It means, 2000 g = 2kg
We need to find the value of normal force on the block on a table. Normal force is balanced by the weight of the block as follows :
N = mg, g is acceleration due to gravity
N = 2 kg × 9.8 m/s²
N = 19.6 N
So, the normal force acting on the block is 19.6 N.
We calculate current from the formula:

, where q is a electric charge transferred over time t
Time should be converted to seconds:
1h 15 min= 75min= 4500s
I=

Result is in unit-Ampere
Answer:
a) {[1.25 1.5 1.75 2.5 2.75]
[35 30 25 20 15] }
b) {[1.5 2 40]
[1.75 3 35]
[2.25 2 25]
[2.75 4 15]}
Explanation:
Matrix H: {[1.25 1.5 1.75 2 2.25 2.5 2.75]
[1 2 3 1 2 3 4]
[45 40 35 30 25 20 15]}
Its always important to get the dimensions of your matrix right. "Roman Columns" is the mental heuristic I use since a matrix is defined by its rows first and then its column such that a 2 X 5 matrix has 2 rows and 5 columns.
Next, it helps in the beginning to think of a matrix as a grid, labeling your rows with letters (A, B, C, ...) and your columns with numbers (1, 2, 3, ...).
For question a, we just want to take the elements A1, A2, A3, A6 and A7 from matrix H and make that the first row of matrix G. And then we will take the elements B3, B4, B5, B6 and B7 from matrix H as our second row in matrix G.
For question b, we will be taking columns from matrix H and making them rows in our matrix K. The second column of H looks like this:
{[1.5]
[2]
[40]}
Transposing this column will make our first row of K look like this:
{[1.5 2 40]}
Repeating for columns 3, 5 and 7 will give us the final matrix K as seen above.
Because the kinetic energy start to decrease, for example if we put sugar in a high temperature tea and we shake it what will happen to the sugar will the kinetic energy increase or decrease, it will probably decrease, just like us the people when we enter a cold room and we have a hot temp.
Explanation:
light travel slower in daimond