Answer:
Power = 2.45Kw or 2450 Watts.
Explanation:
<u>Given the following data;</u>
Mass, m = 250kg
Height, h = 2m
Time, t = 2secs
We know that acceleration due to gravity, g is equal to 9.8m/s²
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
But Energy = mgh
Substituting into the equation, we have

Power = 2450 Watts
To convert to kilowatt (Kw), we would divide by 1000
Power = 2450/1000
Power = 2.45Kw.
Therefore, the average power output of the weightlifter is 2.45 Kilowatts.
Answer:
the order of importance must be b e a f c
Explanation:
Modern theories indicate that the moon was formed by the collision of a bad plant with the Earth during its initial cooling period, due to which part of the earth's material was volatilized and as a ring of remains that eventually consolidated in Moon.
Based on the aforementioned, let's analyze the statements in order of importance
b) True. Since the moon is material evaporated from Earth, its compassion is similar
e) True. If the moon is material volatilized from the earth it must train a finite receding speed
a) True. The solar system was full of small bodies in erratic orbits that wander between and with larger bodies
f) False. The moon's rotation and translation are equal has no relation to its formation phase
c) false. The amount of vaporized material on the moon is large
Therefore, the order of importance must be
b e a f c
The equation of motion of a pendulum is:

where
it its length and
is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for <em>small</em> angles (
), we can use:

Additionally, let us define:

We can now write:

The solution to this differential equation is:

where
and
are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

This justifies that the period depends only on the pendulum's length.