Answer:
The radius of the centrifuge.
Explanation:
Hello,
Since the radius of the centrifuge is just a design parameter, it wouldn't be a cause of failure because it is used to know how many tubes could be fitted in into the centrifuge. On the other hand, keeping you attention away from other factors could turn into a failure as long as the sample could be poured down or just turn out inadequate for the expected results.
Best regards.
atomic number is equal to proton number
so the proton number will be 87
C3H8+3O2--->3CO2+8H
Therefore for every 1:3 there are 3 Carbon dioxides that form. That means find the limiting reactant from the two reactants.
5.5g(1mole C3H8/44.03g of C3H8)=0.1249 moled of C3H8 and if for every one C3H8 we can form three CO2. We can assume 0.3747 miles of CO2 will be produced.
15g of O2(1 mole O2/32g of O2)=0.4685moles O2 and if for every three O2 we can produce three CO2 we may assume a 1:1 ratio.
This means C3H8 will be your limiting reactant. Therefore 0.3747 moles of CO2 will be produced.
0.3747 moles of CO2(48.01 g of CO2/1 mole of CO2)= 17.99 grams of CO2
Chemical change or process
Answer:
The activation energy for the decomposition = 33813.28 J/mol
Explanation:
Using the expression,
Wherem
is the activation energy
R is Gas constant having value = 8.314 J / K mol
Thus, given that,
= ?
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (5 + 273.15) K = 278.15 K
T = (25 + 273.15) K = 298.15 K
So,




<u>The activation energy for the decomposition = 33813.28 J/mol</u>