First calculate for the molar mass of the given formula unit, CaCO₃. This can be done by adding up the product when the number of atom is multiplied to its individual molar mass as shown below.
molar mass of CaCO₃ = (1 mol Ca)(40 g Ca/mol Ca) + (1 mol C)(12 g of C/1 mol of C) + (3 mols of O)(16 g O/1 mol O) = 100 g/mol of CaCO₃
Then, divide the given amount of substance by the calculated molar mass.
number of moles = (20 g)(1 mol of CaCO₃/100 g)
number of moles = 0.2 moles of CaCO₃
<em>Answer: 0.2 moles</em>
Once it becomes balanced.
Answer:
(1) order = 2
(2) R = K [A]²
Explanation:
Given the reaction:
A--------->Product
The rate constant relation for the reaction is given as:
R(i) = K [A]............(*)
Where R(I) is rate constant at different concentration of A.
Taking the rate constant as R1, R2 and R3 for the different concentrations respectively. Then the following equations results
0.011 = K [0.15] ⁿ.........(1)
0.044 = K [0.30]ⁿ .......(2)
0.177 = K [0.60]ⁿ .........(3)
Dividing (2) by (1) and (3) by (1)
Gives:
0.044/0.011 = [0.3/0.15]ⁿ
4 = 2ⁿ; 2² = 2ⁿ; n = 2
Similarly
0.177/0.011 = [0.60/0.15]ⁿ
16.09 = 4ⁿ
16.09 = 16 (approximately)
4² = 4ⁿ ; n = 2
Hence the order of the reaction is 2.
The rate law is R = K [A]²
Answer : The correct option is (A).
Explanation :
- Endothermic reaction : When two liquids are combine into a flask, then the flask feels cold when we touch it because the system absorbed heat from the surrounding.
In general, endothermic process absorbs heat and cool the surrounding.
- Exothermic reaction : When two liquids are combine into a flask, then the flask feels hot when we touch it because the system released heat into the surrounding.
In general, exothermic process releases heat and rise the temperature of surrounding.
Convection is a form of heat transfer that occurs in fluids, which would include liquids and gases.