The easiest answer and most relevant is because it didn't sink
<span />
The answer to this problem is Beryllium is an alkaline earth metal.
Answer:
Part A:
"360 grams of NaCl can be dissolved in 1 L water. So, 2000 grams sugar can be dissolved in 1 L water then we can say that the solubility of salt is lesser in water as to sugar and both heightened by increasing the temperature. If we make a batch of 800 L we can add sugar, 1600 kg at 25 0c. We can add salt is 288 kg at 25 0c and the ingredient tomato is having low solubility."
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/8061-describe-the-sequence-of-adding-ingredients-to-make-the-recipe.html
Part B:
'Manufacturers can generate new value minimize cost and increase operational stability by focusing on 4 broad areas; Management, Supply Circle, Product Design, and Value Recovery.'
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/2807911-what-changes-could-be-made-to-optimize-the-manufacturing-process.html
Let empirical formula for hydrocarbon is CxHy
it will undergo combustion as
CxHy + (x + y/4) O2 ---> xCO2 + (y/2 )H2O
Given that mass of CO2 produced = 9.69 g
So moles of CO2 produced = 9.69 / 44 = 0.22 moles
So moles of carbon present = 0.22 moles
mass of H2O produced = 4.96 g
Moles of H2O produced = mass / molar mass = 4.96 / 18 = 0.28 moles
So moles of H present = 2 X 0.28 = 0.56 moles
Let us divided the moles of each with lowest value of moles
Moles of Carbon = 0.22 / 0.22 = 1 moles
moles of H = 0.56 / 0.22 = 2.55
Multiplying with two to get whole number
the ratio of carbon and hydrogen will be : C:H = 2:5
empirical formula : C2H5
<u>answer</u> 1<u> </u><u>:</u>
Law of conservation of momentum states that
For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
<u>answer</u><u> </u><u>2</u><u>:</u><u> </u>
When a substance is provided energy<u> </u>in the form of heat, it's temperature increases. The extent of temperature increase is determined by the heat capacity of the substance. The larger the heat capacity of a substance, the more energy is required to raise its temperature.
When a substance undergoes a FIRST ORDER phase change, its temperature remains constant as long as the phase change remains incomplete. When ice at -10 degrees C is heated, its temperature rises until it reaches 0 degrees C. At that temperature, it starts melting and solid water is converted to liquid water. During this time, all the heat energy provided to the system is USED UP in the process of converting solid to the liquid. Only when all the solid is converted, is the heat used to raise the temperature of the liquid.
This is what results in the flat part of the freezing/melting of condensation/boiling curve. In this flat region, the heat capacity of the substance is infinite. This is the famous "divergence" of the heat capacity during a first order phase transition.
There are certain phase transitions where the heat capacity does not become infinitely large, such as the process of a non-magnetic substance becoming a magnetic substance (when cooled below the so-called Curie temperature).