1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
3 years ago
5

You are a pirate working for dread pirate roberts. you are in charge of a cannon that exerts a force 10000 n on a cannon ball wh

ile the ball is in the barrel of the cannon. the length of the cannon barrel is 2.44 m and the cannon is aimed at a 45◦ angle from the
Physics
1 answer:
KATRIN_1 [288]3 years ago
7 0
<span>Answer: Let m = mass of cannon Then 10000 = ma a = 10000/m v^2 = u^2 + 2as v^2 = 0 + 2as 84^2 = 2(2.21)(10000/m) 84^2 m = 4.42(10000) m = 6.264172336 = 6.26 kg Part 2 Range = u^2sin(2x38)/g = 84^2sin(76)/9.8 = 698.6129229 = 698.6 m</span>
You might be interested in
An oscillator consists of a block attached to a spring (k = 427 N/m). At some time t, the position (measured from the system's e
White raven [17]

Answer:

a) 4.49Hz

b) 0.536kg

c) 2.57s

Explanation:

This problem can be solved by using the equation for he position and velocity of an object in a mass-string system:

x=Acos(\omega t)\\\\v=-\omega Asin(\omega t)\\\\a=-\omega^2Acos(\omega t)

for some time t you have:

x=0.134m

v=-12.1m/s

a=-107m/s^2

If you divide the first equation and the third equation, you can calculate w:

\frac{x}{a}=\frac{Acos(\omega t)}{-\omega^2 Acos(\omega t)}\\\\\omega=\sqrt{-\frac{a}{x}}=\sqrt{-\frac{-107m/s^2}{0.134m}}=28.25\frac{rad}{s}

with this value you can compute the frequency:

a)

f=\frac{\omega}{2\pi}=\frac{28.25rad/s}{2\pi}=4.49Hz

b)

the mass of the block is given by the formula:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}\\\\m=\frac{k}{4\pi^2f^2}=\frac{427N/m}{(4\pi^2)(4.49Hz)^2}=0.536kg

c) to find the amplitude of the motion you need to know the time t. This can computed by dividing the equation for v with the equation for x and taking the arctan:

\frac{v}{x}=-\omega tan(\omega t)\\\\t=\frac{1}{\omega}arctan(-\frac{v}{x\omega })=\frac{1}{28.25rad/s}arctan(-\frac{-12.1m/s}{(0.134m)(28.25rad/s)})=2.57s

Finally, the amplitude is:

x=Acos(\omega t)\\\\A=\frac{0.134m}{cos(28.25rad/s*2.57s )}=0.45m

5 0
2 years ago
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
VMariaS [17]

At point C because it is at the lowest position.

7 0
3 years ago
Calculate the wavelength of each frequency of electromagnetic radiation: a. 100.2 MHz (typical frequency for FM radio broadcasti
Natalka [10]

Answer:

a). 100.2 MHz (typical frequency for FM radio broadcasting)

The wavelength of a frequency of 100.2 Mhz is 2.99m.

b. 1070 kHz (typical frequency for AM radio broadcasting) (assume four significant figures)

The wavelength of a frequency of 1070 khz is 280.3 m.

c. 835.6 MHz (common frequency used for cell phone communication)

The wavelength of a frequency of 835.6 Mhz is 0.35m.

Explanation:

The wavelength can be determined by the following equation:

c = \lambda \cdot \nu  (1)

Where c is the speed of light, \lambda is the wavelength and \nu is the frequency.  

Notice that since it is electromagnetic radiation, equation 1 can be used. Remember that light propagates in the form of an electromagnetic wave.

<em>a). 100.2 MHz (typical frequency for FM radio broadcasting)</em>

Then, \lambda can be isolated from equation 1:

\lambda = \frac{c}{\nu} (2)

since the value of c is 3x10^{8}m/s. It is necessary to express the frequency in units of hertz.

\nu = 100.2 MHz . \frac{1x10^{6}Hz}{1MHz} ⇒ 100200000Hz

But 1Hz = s^{-1}

\nu = 100200000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{100200000s^{-1}}

\lambda = 2.99 m

Hence, the wavelength of a frequency of 100.2 Mhz is 2.99m.

<em>b. 1070 kHz (typical frequency for AM radio broadcasting) (assume four significant figures)</em>

<em> </em>

\nu = 1070kHz . \frac{1000Hz}{1kHz} ⇒ 1070000Hz

But  1Hz = s^{-1}

\nu = 1070000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{1070000s^{-1}}

\lambda = 280.3 m

Hence, the wavelength of a frequency of 1070 khz is 280.3 m.

<em>c. 835.6 MHz (common frequency used for cell phone communication) </em>

\nu = 835.6MHz . \frac{1x10^{6}Hz}{1MHz} ⇒ 835600000Hz

But  1Hz = s^{-1}

\nu = 835600000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{835600000s^{-1}}

\lambda = 0.35 m

Hence, the wavelength of a frequency of 835.6 Mhz is 0.35m.

6 0
3 years ago
44. A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down
Vladimir [108]

Answer:

18.4 m

Explanation:

(a)

The known variables in this problem are:

u = 1.40 m/s is the initial vertical velocity (we take downward direction as positive direction)

t = 1.8 s is the duration of the fall

a = g = 9.8 m/s^2 is the acceleration due to gravity

(b)

The vertical distance covered by the life preserver is given by

d=ut + \frac{1}{2}at^2

If we substitute all the values listed in part (a), we find

d=(1.40 m/s)(1.8 s)+\frac{1}{2}(9.8 m/s^2)(1.8 s)^2=18.4m

8 0
3 years ago
A certain shade of blue has a frequency of 7.15 × 1014 hz. what is the energy of exactly one photon of this light?
Ket [755]
The energy carried by a single photon of frequency f is given by:
E=hf
where h=6.6 \cdot 10^{-34} m^2 kg s^{-1} is the Planck constant. In our problem, the frequency of the photon is f=7.15 \cdot 10^{14}Hz, and by using these numbers we can find the energy of the photon:
E=(6.6\cdot 10^{-34}m^2 kg s^{-1})(7.15 \cdot 10^{14}Hz)=4.7 \cdot 10^{-19}J
4 0
3 years ago
Other questions:
  • PLZ!!!!!HURRY WILL BE FRIEND FOREVER!!!
    6·1 answer
  • A teacher performing demonstration finds that a piece of cork displaces 23.5 ml of water. The piece of cork has a mass 5.7 g. Wh
    10·1 answer
  • A young woman was found dead on the side of the road. Two witnesses said they saw and red cadillac hit her and drive off earlier
    7·1 answer
  • An electron moves in a circular path perpendicular to a magnetic field of magnitude 0.275 T. If the kinetic energy of the electr
    9·2 answers
  • 9. All of the following are adaptations of herbivores EXCEPT:
    9·1 answer
  • When warm air rises, cold air will _____.
    14·1 answer
  • Which part of the eye is used to see things in high detail?
    10·1 answer
  • The loudness, L, measured in decibels (Db), of a sound intensity, I, measured in watts per square meter, is defined as , where a
    15·1 answer
  • What does the model show?
    6·1 answer
  • Define First Condition of Equilibrium ??​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!