A large volume of material will have a small amount of mass when the
material in question is gaseous or porous, and therefore has a lot of
space within it despite taking up a large amount of space overall.
Use the universal gas formula
PV=nRT
where
P=pressure ( 0.980 atm)
V=volume (L)
T=temperature ( 23 ° C = 23+273.15 = 296.15 ° K)
n=number of moles of ideal gas (0.485 mol)
R=universal gas constant = 0.08205 L atm / (mol·K)
Substitute values,
Volume, V (in litres)
=nRT/P
=0.485*0.08205*296.15/0.980
= 12.0256 L
= 12.0 L (to three significant figures)
Read more on Brainly.com -
brainly.com/question/10606064#readmore
The answer is D because moving all of the body parts would get the heart racing and the blood pumping!
Answer:
The molecular weight for the compound is 60.1 g/mol
Explanation:
We need to determine the molality of solute to find out the molar mass of it.
We apply the colligative property of freezing point depression:
ΔT = Kf . m . i
If the compound was also found to be nonvolatile and a non-electrolyte,
i = 1.
Freezing T° of pure solvent - Freezing T° of solution = Kf . m
0°C - (-2.05°C) = 1.86°C/m . m
2.05°C / 1.86m/°C = m → 1.10 mol/kg
To determine the moles of solute we used, we can multiply molality by the mass of solvent in kg → 202.1 g . 1kg/1000g = 0.2021 kg
1.10 mol/kg . 0.2021kg = 0.223 moles
Molar mass→ g/mol → 13.39 g / 0.223 mol = 60.1 g/mol