1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
3 years ago
14

At t1 = 2.00 s, the acceleration of a particle in counterclockwise circular motion is 6.00 i + 4.00 j m/s2 . It moves at constan

t speed. At time t2 = 5.00 s, its acceleration is 4.00 i - 6.00 j m/s2 . What is the radius of the path taken by the particle if t2-t1 is less than one period?

Physics
1 answer:
Jet001 [13]3 years ago
8 0

The particle moves with constant speed in a circular path, so its acceleration vector always points toward the circle's center.

At time t_1, the acceleration vector has direction \theta_1 such that

\tan\theta_1=\dfrac{4.00}{6.00}\implies\theta_1=33.7^\circ

which indicates the particle is situated at a point on the lower left half of the circle, while at time t_2 the acceleration has direction \theta_2 such that

\tan\theta_2=\dfrac{-6.00}{4.00}\implies\theta_2=-56.3^\circ

which indicates the particle lies on the upper left half of the circle.

Notice that \theta_1-\theta_2=90^\circ. That is, the measure of the major arc between the particle's positions at t_1 and t_2 is 270 degrees, which means that t_2-t_1 is the time it takes for the particle to traverse 3/4 of the circular path, or 3/4 its period.

Recall that

\|\vec a_{\rm rad}\|=\dfrac{4\pi^2R}{T^2}

where R is the radius of the circle and T is the period. We have

t_2-t_1=(5.00-2.00)\,\mathrm s=3.00\,\mathrm s\implies T=\dfrac{3.00\,\rm s}{\frac34}=4.00\,\mathrm s

and the magnitude of the particle's acceleration toward the center of the circle is

\|\vec a_{\rm rad}\|=\sqrt{\left(6.00\dfrac{\rm m}{\mathrm s^2}\right)^2+\left(4.00\dfrac{\rm m}{\mathrm s^2}\right)^2}=7.21\dfrac{\rm m}{\mathrm s^2}

So we find that the path has a radius R of

7.21\dfrac{\rm m}{\mathrm s^2}=\dfrac{4\pi^2R}{(4.00\,\mathrm s)^2}\implies\boxed{R=2.92\,\mathrm m}

You might be interested in
What is the equation that defines work
mina [271]
Work=force*displacment
3 0
3 years ago
Would the springs inside a bathroom scale be more compressed or less compressed if you weighed yourself in an elevator that was
Ber [7]
More compressed. moving up = apparent weight (i.e., your norma force) is greater. this means you’ll weighr more and push those springs down even more than you would at rest.
6 0
3 years ago
When two or more capacitors are connected in series across a potential difference:
34kurt

Answer:

A) and B) are correct.

Explanation:

Let's take a look at the attached picture. Now

The total voltage across both capacitors is the same as the sum of the voltage from each device, that statement is true for any electrical device connected in series. So a) is TRUE

The equivalent capacitance is going to be: \frac{1}{C_{total}}=\frac{1}{C_1} +\frac{1}{C_2}

And that value can be mathematically proven that is always less than any of the values of each capacitor. So b is TRUE

And through both capacitors flow the same current, but the amount of charge depends on the value of the capacitors, so only could be the same if the capacitors are the same value. Otherwise, don't. C) not always, so FALSE

7 0
3 years ago
Which of the following changes would make a heat engine waste more energy as heat
Komok [63]
A decrease in it's operating temperature would make a heat engine less efficient. This is because in order to operate, a heat engine needs to be hot and maintain that temperature.
4 0
3 years ago
What evidence did astronomers use to prove jets travel in opposite directions?
mr Goodwill [35]

The evidence that astronomers use to prove jets travel in opposite direction is Spectral lines from a very fast moving ionized gases.

<h3>Who are the astronomers?</h3>

Astronomer is a person who study astronomy which is a scientific study that has to do with space, space bodies, comets, planets, stars and so on.

Therefore, The evidence that astronomers use to prove jets travel in opposite direction is Spectral lines from a very fast moving ionized gases.

Learn more about astronomers below.

brainly.com/question/10826203

#SPJ11

7 0
2 years ago
Read 2 more answers
Other questions:
  • The orbiting of the moon around the Earth can be explained by
    11·1 answer
  • Why are newtons second and third law important to everyday life?
    9·1 answer
  • A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0.0
    8·1 answer
  • A particle of mass 4.5 × 10-8 kg and charge +5.4 μC is traveling due east. It enters perpendicularly a magnetic field whose magn
    14·1 answer
  • what is the mass of of a wooden block that has a length of 4cm and a width of 5cm and a height of 10cm
    6·1 answer
  • A 4.00 kg ball is moving at 4.00 m/s to the EAST and a 6.00 kg ball is moving at 3.00 m/s to the NORTH. The total momentum of th
    8·1 answer
  • Why is it so important to know how the parts of a can opener work
    7·1 answer
  • How a suit of armor might be a good analogy for a function of the skeleton system
    8·1 answer
  • Draw position time graph when speed is increasing​
    11·1 answer
  • 3. What is the distance between New York and London, if an airplane flying at 580 Km per hour takes 7 hours to complete the trip
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!