1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr Goodwill [35]
2 years ago
14

Parallel light waves hit the surface of a still lake and reflect in the same direction. Which interaction of light and matter do

es this illustrate?
Physics
2 answers:
otez555 [7]2 years ago
5 0
Parallel light waves hit the surface of a still lake and reflect in the same direction and the interaction of light and matter that it illustrates is called regular reflection. Regular reflection occurs whenever the reflecting surface is very smooth. The surface of the still lake is smooth. I hope the answer helps you.
AleksandrR [38]2 years ago
5 0

Answer:

regular reflection

Explanation:

Gradpoint

You might be interested in
1. List a similarity between magnetic force and electrical force.
Rus_ich [418]

Answer:

Both are attractive as well as repulsive.

Explanation:

(Like poles repel, like charges<em> repel</em>; unlike poles attract, unlike charges <em>attract</em>).

7 0
3 years ago
Identify the statement below that is true about a type of stress.
Sunny_sXe [5.5K]

1-D Eustress is a positive response

2-B resistance

3-A Imagine you are doing your gymnastics

6 0
3 years ago
Read 2 more answers
Velocity is the
ale4655 [162]

Okay, hun. Velocity is a vector quantity that measures displacement over a period of time. Velocity = Speed/Time (v=s/t). Hope this helped you. I took physics over 4 years ago. I'm more of a biology/chemistry person. (I major in those)

4 0
3 years ago
The ozone layer protects us from the harmful effects of which type of radiation?
leonid [27]

Answer:

Hey there

The ozone layer or ozone shield is a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet radiation

Can u have brainly

3 0
2 years ago
A solid sphere, a solid disk, and a thin hoop are all released from rest at the top of the incline (h0 = 20.0 cm).
Ede4ka [16]

Answer:

a. The object with the smallest rotational inertia, the thin hoop

b. The object with the smallest rotational inertia, the thin hoop

c.  The rotational speed of the sphere is 55.8 rad/s and Its translational speed is 1.67 m/s

Explanation:

a. Without doing any calculations, decide which object would be spinning the fastest when it gets to the bottom. Explain.

Since the thin has the smallest rotational inertia. This is because, since kinetic energy of a rotating object K = 1/2Iω² where I = rotational inertia and ω = angular speed.

ω = √2K/I

ω ∝ 1/√I

since their kinetic energy is the same, so, the thin hoop which has the smallest rotational inertia spins fastest at the bottom.

b. Again, without doing any calculations, decide which object would get to the bottom first.

Since the acceleration of a rolling object a = gsinФ/(1 + I/MR²), and all three objects have the same kinetic energy, the object with the smallest rotational inertia has the largest acceleration.

This is because a ∝ 1/(1 + I/MR²) and the object with the smallest rotational inertia  has the smallest ratio for I/MR² and conversely small 1 + I/MR² and thus largest acceleration.

So, the object with the smallest rotational inertia gets to the bottom first.

c. Assuming all objects are rolling without slipping, have a mass of 2.00 kg and a radius of 3.00 cm, find the rotational and translational speed at the bottom of the incline of any one of these three objects.

We know the kinetic energy of a rolling object K = 1/2Iω²  + 1/2mv² where I = rotational inertia and ω = angular speed, m = mass and v = velocity of center of mass = rω where r = radius of object

The kinetic energy K = potential energy lost = mgh where h = 20.0 cm = 0.20 m and g = acceleration due to gravity = 9.8 m/s²

So, mgh =  1/2Iω²  + 1/2mv² =  1/2Iω²  + 1/2mr²ω²

Let I = moment of inertia of sphere = 2mr²/5 where r = radius of sphere = 3.00 cm = 0.03 m and m = mass of sphere = 2.00 kg

So, mgh = 1/2Iω²  + 1/2mr²ω²

mgh = 1/2(2mr²/5 )ω²  + 1/2mr²ω²

mgh = mr²ω²/5  + 1/2mr²ω²

mgh = 7mr²ω²/10

gh = 7r²ω²/10

ω² = 10gh/7r²

ω = √(10gh/7) ÷ r

substituting the values of the variables, we have

ω = √(10 × 9.8 m/s² × 0.20 m/7) ÷ 0.03 m

= 1.673 m/s ÷ 0.03 m

= 55.77 rad/s

≅ 55.8 rad/s

So, its rotational speed is 55.8 rad/s

Its translational speed v = rω

= 0.03 m × 55.8 rad/s

= 1.67 m/s

So, its rotational speed is of the sphere is 55.8 rad/s and Its translational speed is 1.67 m/s

6 0
2 years ago
Other questions:
  • Which of the following occurs in meiosis that does not occur in mitosis
    7·1 answer
  • swimmers at a water park have a choice of two frictionless water slides as shown in the figure. although both slides drop over t
    10·1 answer
  • If a psychologist were to run an experiment measuring the effects of temperature on aggression the differing temperature would b
    13·1 answer
  • Three negative point charges q1 =--5 nC, q2 = -2 nC and q3 = -5 nC lie along a vertical line. The charge q2 lies exactly between
    10·1 answer
  • A differnece in electric potential is required for an electric charge to flow through a wire.
    7·2 answers
  • True or false: Equilibrium is the continual change from product to reactant and back.
    10·1 answer
  • The time for a sound wave to travel between two people is 0.80 s,
    11·1 answer
  • A consequence of yo-yo dieting is what
    7·1 answer
  • boat travels through a river at a speed of 25 m/s, passing through schools and opening the soundtrack. One student measured freq
    6·1 answer
  • Please help meee please please
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!