This question can be solved using the concept of friction energy.
The thermal energy change is b "258.4 J".
The change in thermal energy will be equal to the friction energy produced during the motion of the box.

where,
μ = coefficient of kinetic friction = 0.4
f = force applied = 38 N
d = distance traveled by the box = 17 m
Therefore,

<u>E = 258.4 J</u>
Learn more about friction energy here:
brainly.com/question/1343045?referrer=searchResults
Work = force x distance
F= 2.5
D= 3
Work = 2.5 x 3 =7.5
Work = 7.5 J
J=Jules (Jules is the unit uses to calculate work)
Light are transfer through waves in the atmosphere and yes it true that the darker the color is the more heat it could absorb thus it is also explain that the lighter the color is the less heat or light its absorb its because the light is bounces back through other form of light and it lessens the amount of heat in a substance. In Ryan's procedure the possible wrong that he done is the present of a green cotton glove. Green color are one of the color that bounces light and could not support the hypothesis of Ryan and the possible temperature he could get is not the accurate one.
Both hits the ground <u>at the same time</u> because they have <u>same vertical acceleration</u>
<u></u>
<h3>What is vertical acceleration?</h3>
A vertical acceleration is typically one for which the direction of the vector is vertically upward, usually aligned with and opposite to the gravity vector. But this is a descriptive term, not a rigorous or technical term. A car may accelerate along a road and that would generally be assumed to be a horizontal.
The vector perpendicular to this direction, as perhaps a suspension motion over a bump, would be described as vertical even if it is not strictly vertical.
Note that acceleration is defined as the rate of change of the velocity vector. But the gravitation vector, ‘g’, generally vertically downward, is often denoted by what acceleration a mass in free fall (absent air resistance) would experience, i.e. the relationship between mass and weight.
Learn more about vertical acceleration
brainly.com/question/19528199
#SPJ4
Answer:
4.14°
Explanation:
given:
r = 1.2 km
v = 105 km/h
1) <em>convert your given </em>
a) r = 1.2 km to m = 1200m
b) v = 105 km/h to m/s = 29.2 m/s
2) <em>plug into your ideal banking angle equation</em>
(
) =
= 4.14°