Answer:
the magnitude of the velocity of one particle relative to the other is 0.9988c
Explanation:
Given the data in the question;
Velocities of the two particles = 0.9520c
Using Lorentz transformation
Let relative velocity be W, so
v
= ( u + v ) / ( 1 + ( uv / c²) )
since each particle travels with the same speed,
u = v
so
v
= ( u + u ) / ( 1 + ( u×u / c²) )
v
= 2(0.9520c) / ( 1 + ( 0.9520c )² / c²) )
we substitute
v
= 1.904c / ( 1 + ( (0.906304 × c² ) / c²) )
v
= 1.904c / ( 1 + 0.906304 )
v
= 1.904c / 1.906304
v
= 0.9988c
Therefore, the magnitude of the velocity of one particle relative to the other is 0.9988c
Answer:
Change in velocity, change in direction, change in both velocity and direction
Explanation:
<u>Answer:</u>
<h3>During wet and freezing temperatures, ice is able to form at a faster pace on bridges because freezing winds blow from above and below and both sides of the bridge, causing heat to quickly escape. The road freezes slower because it is merely losing heat through its surface.</h3>
<u>Sources:</u>
-- https://intblog.onspot.com/en-us/why-do-bridges-become-icy-before-roads
and
-- https://www.accuweather.com/en/accuweather-ready/why-bridges-freeze-before-roads/687262
I hope this helps you! ^^
<span>A. How could energy become the matter present today? </span>
Answer:
2513.6 W
Explanation:
Acoustic power = sound intensity × area of hemisphere
Sound intensity = 1 W/m^2
Area of hemisphere = 2πr^2 = 2×3.142×20^2 = 2513.6 m^2
Acoustic power = 1 W/m^2 × 2513.6 m^2 = 2513.6 W