The HONC 1234 rule is a way to remember the bonding tendencies of hydrogen, oxygen, nitrogen, and carbon atoms in molecules. Hydrogen tends to form one bond, oxygen two, nitrogen three and carbon four.
Answer:
30.4 g. NH3
Explanation:
This problem tells us that the hydrogen (H2) is the limiting reactant, as there is "an excess of nitrogen." Using stoichiometry (the relationship between the various species of the equation), we can see that for every 3 moles of H2 consumed, 2 moles of NH3 are produced.
But before we can use that relationship to find the number of grams of ammonia produced, we need to convert the given grams of hydrogen into moles:
5.4 g x [1 mol H2/(1.008x2 g.)] = 2.67857 mol H2 (not using significant figures yet; want to be as accurate as possible)
Now, we can use the relationship between H2 and NH3.
2.67857 mol H2 x (2 mol NH3/3 mol H2) = 1.7857 mol NH3
Now, we have the number of moles of ammonia produced, but the answer asks us for grams. Use the molar mass of ammonia to convert.
1.7857 mol NH3 x 17.034 g. NH3/mol NH3 = 30.4 g. NH3 (used a default # of 3 sig figs)
Answer:
a metal spoon left in boiling water
Explanation:
Answer:
in this the correct answer is option 2.
Answer is: 2. can dissolve.
Ionic compounds separates into particles (ions) in water because of their ionic bond.
For example sodium chloride is ionic compound and strong electrolyte and dissociates in water on hydrated sodium cations and chlorine anions:
NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
Ionic bond is the electrostatic attraction between oppositely charged ions (cations and anions).