Answer:
θ = 6.3 *10³ revolutions
Explanation:
Angular acceleration of the drill
We apply the equations of circular motion uniformly accelerated
ωf= ω₀ + α*t Formula (1)
Where:
α : Angular acceleration (rad/s²)
ω₀ : Initial angular speed ( rad/s)
ωf : Final angular speed ( rad
t : time interval (s)
Data
ω₀ = 0
ωf = 350000 rpm = 350000 rev/min
1 rev = 2π rad
1 min= 60 s
ωf = 350000 rev/min =350000*(2π rad/60 s)
ωf = 36651.9 rad/s
t = 2.2 s
We replace data in the formula (2) :
ωf= ω₀ + α*t
36651.9 = 0 + α* (2.2)
α = 36651.9 / (2.2)
α = 17000 rad/s²
Revolutions made by the drill
We apply the equations of circular motion uniformly accelerated
ωf²= ω₀ ²+ 2α*θ Formula (2)
Where:
θ : Angle that the body has rotated in a given time interval (rad)
We replace data in the formula (2):
(ωf)²= ω₀²+ 2α*θ
(36651.9)²= (0)²+ 2( 17000 )*θ
θ = (36651.9)²/ (34000 )
θ = 39510.64 rad = 39510.64 rad* (1 rev/2πrad)
θ = 6288.31 revolutions
θ = 6.3 *10³ revolutions
Answer:
Mass
Explanation:
Inertia is essentially an object's tendency to stay in motion or at rest unless it is forced to do otherwise (pun intended). It only makes sense to me that mass would best quantify an object's inertia, because an object with more mass would be harder to move and/or stop from moving.
Answer:
32 cm
Explanation:
f = focal length of the converging lens = 16 cm
Since the lens produce the image with same size as object, magnification is given as
m = magnification = - 1
p = distance of the object from the lens
q = distance of the image from the lens
magnification is given as
m = - q/p
- 1 = - q/p
q = p eq-1
Using the lens equation, we get
1/p + 1/q = 1/f
using eq-1
1/p + 1/p = 1/16
p = 32 cm
Done I don't know answer of this question or this photo is the answer can you tell me

The equivalent gravitational force is ~

We know that ~

where,
= mass of 1st object = 500 kg
= mass of 2nd object = 20kg
- G = gravitational constant =

- r = distance between the objects = 2.12 m
Let's calculate the force ~