According to Newton's Second Law of Motion, the net force experienced by the system is equal to the mass of the system in question times the acceleration in motion. In this case, the net force is the difference of gravitational force and the force experience by the motion of the airplane. This difference is already given to be 210 N.
Net force = ma
210 N = (73 kg)(a)
a = +2.92 m/s²
Thus, the acceleration of the airplane's motion is 2.92 m/s² to the positive direction which is upwards.
Answer:
The batteries make it possible to store the electricity generated when the sun and wind peak so it can be available to the grid when electricity demand is at its peak.
Explanation:
Hope this helps!
If not, I am sorry.
The only force being acted upon it is gravity. A ball that was thrown downward off a building isn't in freefall, because it had initial velocity. A piece of paper can't necessarily be in free fall because it is affected by air resistance.
Answer:
The angular velocity is slowing down.
Explanation:
- By convention, if a rigid body is rotating clockwise, the angular velocity is negative.
- If the angular acceleration has a positive sign, since the angular acceleration and the angular velocity have opposite signs, this means that the angular velocity is slowing down.
Answer:
A.) 1430 metres
B.) 80 seconds
Explanation:
Given that the train accelerates from rest at 1.1m/s^2 for 20s. The initial velocity U will be:
U = acceleration × time
U = 1.1 × 20 = 22 m/s
It then proceeds at constant speed for 1100 m
Then, time t will be
Time = distance/ velocity
Time = 1100/22
Time = 50 s
before slowing down at 2.2m/s^2 until it stops at the station.
Deceleration = velocity/time
2.2 = 22/t
t = 22/2.2
t = 10s
Using area under the graph, the distance between the two stations will be :
(1/2 × 22 × 20) + 1100 + (1/2 × 22 × 10)
220 + 1100 + 110
1430 m
The time taken between the two stations will be
20 + 50 + 10 = 80 seconds