1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pogonyaev
3 years ago
7

Which statements about acceleration are true?

Physics
2 answers:
ANTONII [103]3 years ago
6 0

b. for acceleration , you must have a number , a unit, and a direction

c. to calculate acceleration , divide the change in velocity by the change in time .

a. the symbol for acceleration

larisa86 [58]3 years ago
5 0
C is the correct answer, hope it helps
You might be interested in
A man can jump 1.5 m on earth. calculate the approximate
Olegator [25]

Answer:

18 m

Explanation:

G = Gravitational constant

m = Mass of planet = \rho V

\rho = Density of planet

V = Volume of planet assuming it is a sphere = \dfrac{4}{3}\pi r^3

r = Radius of planet

Acceleration due to gravity on a planet is given by

g=\dfrac{Gm}{r^2}\\\Rightarrow g=\dfrac{G\rho V}{r^2}\\\Rightarrow g=\dfrac{G\rho \dfrac{4}{3}\pi r^3}{r^2}\\\Rightarrow g=\dfrac{4G\rho\pi r}{3}

So,

g\propto \rho r

Density of other planet = \rho_p=\dfrac{1}{4}\rho_e

Radius of other planet = r_p=\dfrac{1}{3}r_e

\dfrac{g_e}{g_p}=\dfrac{\rho_e r_e}{\rho_p r_p}\\\Rightarrow \dfrac{g_e}{g_p}=\dfrac{\rho_e r_e}{\dfrac{1}{4}\rho_e\times \dfrac{1}{3}r_e}\\\Rightarrow \dfrac{g_e}{g_p}=12\\\Rightarrow g_p=\dfrac{g_e}{12}\\\Rightarrow g_p=\dfrac{9.8}{12}

Since the person is jumping up the acceleration due to gravity will be negative.

From kinematic equations we have

v^2-u^2=2g_es\\\Rightarrow u^2=v^2-2g_es\\\Rightarrow u^2=0-2\times -9.8\times 1.5\\\Rightarrow u^2=2\times 9.8\times 1.5

On the other planet

v^2-u^2=2g_ps\\\Rightarrow s=\dfrac{v^2-u^2}{2g_p}\\\Rightarrow s=\dfrac{0-(2\times 9.8\times 1.5)}{2\times -\dfrac{9.8}{12}}\\\Rightarrow s=18\ \text{m}

The man can jump a height of 18 m on the other planet.

5 0
3 years ago
A car traveling at 20 m/s when the driver sees a child standing in the road. He takes 0.80 s to react, then steps on the brakes
mr Goodwill [35]

When driver see the child standing on road his speed is 20 m/s

So here at that instant his reaction time is 0.80 s

He will cover a total distance given by product of speed and time

d_1 = v* t

d_1 = 20 * 0.8

d_1 = 16 m

now after this he will apply brakes with acceleration a = 7 m/s^2

so the distance covered before it stop is given by

v_f^2 - v_i^2 = 2 a d

0 - 20^2 = 2*(-7)*d_2

d_2 = 28.6 m

so the total distance covered by it

d = d_1 + d_2

d = 16 + 28.6 = 44.6 m

<em>so it will cover a total distance of 44.6 m</em>

3 0
3 years ago
What The BEST GAME?????/<br><br> a: Roblox<br><br> b; Mincraft<br><br> c; Fortnite
Maksim231197 [3]

Answer:

A,C

Explanation:

8 0
3 years ago
Read 2 more answers
A projectile is fired vertically upwards and reaches a height of 78.4 m. Find the velocity of projection and the time it takes t
Musya8 [376]

Answer:

1.) U = 39.2 m/s

2.) t = 4s

Explanation: Given that the

height H = 78.4m

The projectile is fired vertically upwards under the acceleration due to gravity g = 9.8 m/s^2

Let's assume that the maximum height = 78.4m. And at maximum height, final velocity V = 0

Velocity of projections can be achieved by using the formula

V^2 = U^2 - 2gH

g will be negative as the object is moving against the gravity

0 = U^2 - 2 × 9.8 × 78.4

U^2 = 1536.64

U = sqrt( 1536.64 )

U = 39.2 m/s

The time it takes to reach its highest point can be calculated by using the formula;

V = U - gt

Where V = 0

Substitute U and t into the formula

0 = 39.2 - 9.8 × t

9.8t = 39.2

t = 39.2/9.8

t = 4 seconds.

7 0
3 years ago
A gas is compressed at a constant pressure of 0.800 atm from 12.00 L to 3.00 L. In the process, 390 J of energy leaves the gas b
Andru [333]

Answer:

a)W= - 720 J

b)ΔU= 330 J

Explanation:

Given that

P = 0.8 atm

We know that 1 atm = 100 KPa

P = 80 KPa

V₁ = 12 L = 0.012 m³       ( 1000 L = 1 m³)

V₂ = 3 L = 0.003 m³

Q= - 390 J ( heat is leaving from the system )

We know that work done by gas given as

W = P (V₂ -V₁ )

W= 80 x ( 0.003 - 0.012 ) KJ

W= - 0.72 KJ

W= - 720 J    ( Negative sign indicates work done on the gas)

From first law of thermodynamics

Q = W + ΔU

ΔU=Change in the internal energy

Now by putting the values

- 390 = - 720 + ΔU

ΔU= 720 - 390  J

ΔU= 330 J

5 0
3 years ago
Other questions:
  • Newton’s third law of motion says that for every action an And opposite reaction
    10·1 answer
  • A cosmic-ray proton in interstellar space has an energy of 59 MeV and executes a circular orbit with a radius equal to that of M
    8·1 answer
  • A swimming pool is 1.4 m deep and 12 m long. Is it possible for you to dive to the very bottom of the pool so people standing on
    13·1 answer
  • A large box of mass M is moving on a horizontal floor at speed v0. A small box of mass m is sitting on top of the large box. The
    12·1 answer
  • A 2.0-kg object moving 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost
    11·1 answer
  • suppose it takes 500 years to form 2 cm of new soil without erosion. Of a farmer need at least 35 cm of soil to plant a particul
    8·1 answer
  • A small object with mass 1.30 kg is mounted on one end of arod
    10·1 answer
  • Please why does a simple pendulum graph fail to pass through the origin ?​
    6·2 answers
  • Owen is going on a multi-day hike up a large mountain. He wants to know what clothes he should bring for the higher elevation as
    15·2 answers
  • A sports car starts from rest it covers a distance of 900 m to attain a speed of 80m s determine the acceleration of the car and
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!