Answer:
An estimate for the time it will take for a spacecraft to travel from Earth to Mars is approximately 138.8 days
Explanation:
The distance between Earth and the Moon = 684,400 km
The distance between Earth and Mars = 220.58 × 10⁶ km
The distance between Earth and Pluto = 5.2241 × 10⁹ km
The ratio of the distance between Earth and Pluto and the distance between Earth and Mars = (5.2241 × 10⁹ km)/(220.58 × 10⁶ km) ≈ 23.683
It took 2006 to 2015 (9 years) to travel from Earth to Pluto, therefore, it can take approximately (9 years)/(23.683) ≈ 0.38 of a year which is ((9 years)/(23.683)) × 365.2422 ≈ 138.8 days for a spacecraft to travel from Earth to Mars
Answer:
i. 0.34
ii. 0.4
iii. 1700 w/m²
iv. 2211.36 w/m²
Explanation:
Given that
Irradiation of the plate, G = 2500 w/m²
Reflected rays, p = 500 w/m²
Emissive power, E = 1200 w/m²
See attachment for calculations
Answer:
The correct answer is C. All three have equal non-zero pressure
Explanation:
Pressure is the relationship between the force and the area of a body, when the bodies are liquid the formula that
P = rho g h
Where rho is the density and h the height of the liquid
We see that for this expression the pressure does not depend on the shape of the container, but on its height, as the three vessels have the same height, the pressure at the bottom is the same.
The correct answer is C All three have equal non-zero pressure
Explanation:
When a truck travels in equal distances in equal intervals of time then we say that the body has got a uniform velocity. In the above example a truck is traveling at 5 miles in all the positions at A, B, and C and all in the intervals of 5 minutes each.
Answer
The dedicated graphics card is used when performing hardware-intensive tasks so as to ensure efficiency and balanced performance. However, it uses more power and thus produces more heat. When the cooling system is not sufficient or the room is not well ventilated, your PC begins to overheat while playing games. Explanation: How does the second law of thermodynamics relate to the direction of heat flow? Heat of itself never flows from a cold object to a hot object. ... The second law expresses the maximum efficiency of a heat engine in terms of hot and cold temperatures. one of these answers i am not sure