This is a neutron induced fission, therefore a neutron will be added to the U²³⁵ to cause the reaction, and thus it will be added to the left side. There will be unknown number of neutrons produced and thus we put this on the right hand side.
n₁ + U²³⁵ = Te¹³⁷ + Zr ⁹⁷ + xn1 ( n1 to mean a neutron of mass 1)
To balance the masses on both sides of the equation;
1 + 235 = 137 +97+ x
x = 2
the end reaction will be
n₁ +U²³⁵ = Te¹³⁷ + Zr⁹⁷ + 2 n₁
Answer:
0.595 M
Explanation:
The number of moles of water in 1L = 1000g/18g/mol = 55.6 moles of water.
Mole fraction = number of moles of KNO3/number of moles of KNO3 + number of moles of water
0.0194 = x/x + 55.6
0.0194(x + 55.6) = x
0.0194x + 1.08 = x
x - 0.0194x = 1.08
0.9806x= 1.08
x= 1.08/0.9806
x= 1.1 moles of KNO3
Mole fraction of water= 55.6/1.1 + 55.6 = 0.981
If
xA= mole fraction of solvent
xB= mole fraction of solute
nA= number of moles of solvent
nB = number of moles of solute
MA= molar mass of solvent
MB = molar mass of solute
d= density of solution
Molarity = xBd × 1000/xAMA ×xBMB
Molarity= 0.0194 × 1.0627 × 1000/0.981 × 18 × 0.0194×101
Molarity= 20.6/34.6
Molarity of KNO3= 0.595 M
Don’t eat or drink in labs
Dress for the lab; don’t wear open toed shoes
Dispose of lab waste properly
No horse play
Don’t taste or sniff things in the lab
Tire your hair back
Answer:
a) volume of ammonium iodide required =349 mL
b) the moles of lead iodide formed = 0.0436 mol
Explanation:
The reaction is:

It shows that one mole of lead nitrate will react with two moles of ammonium iodide to give one mole of lead iodide.
Let us calculate the moles of lead nitrate taken in the solution.
Moles=molarityX volume (L)
Moles of lead nitrate = 0.360 X 0.121 =0.0436 mol
the moles of ammonium iodide required = 2 X0.0436 = 0.0872 mol
The volume of ammonium iodide required will be:

the moles of lead iodide formed = moles of lead nitrate taken = 0.0436 mol