1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lubasha [3.4K]
2 years ago
6

Water of density 1000 kg/m3 falls without splashing at a rate of 0.373 L/s from a height of 40.5 m into a 0.64 kg bucket on a sc

ale. If the bucket is originally empty, what does the scale read 2.93 s after the first drop contacts the bucket? The acceleration due to gravity is 9.8 m/s 2 .
Physics
1 answer:
Sphinxa [80]2 years ago
4 0

Answer:

       F_scale = 20.18 N

Explanation:

The scale reading corresponds to two factors, the first the weight of the water in the container and the second the force of the liquid that is falling at the moment of reading.

* Let's find the amount of liquid in the container for a time of t = 2.93 s

Let's use a direct proportion rule. If 0.373 l falls in one second at t = 2.93 s, how many liters are there

        V_{water} = 2.93 s (0.373 l / 1s) = 1.09 l

        V_{water} = 1.09 10⁻³ m³

the amount of water is

       ρ = m / V

       m = ρ V

       m = 1000 1.09 10⁻³

       m = 1.09 kg

so the weight of the liquid in the container for this time is

       W = mg

       W = 1.09 9.8

       W = 10.68 N

* Let's look for the force of the falling jet

Let's use Bernoulli's equation, where the subscript 1 is for the container and the subscript 2 is for the water at a height h

        P₁ + 1/2 ρ g v₁² + ρ g y₁ = P₂ + 1/2  ρ g v₂² + ρ g y₂

In this case, the water falls freely, so the external pressure is atmospheric.

         P₂ = P_{atm}

since they indicate that the water falls, we assume that its initial velocity is zero v₂ = 0

let's use kinematics to find the speed of a drop when it reaches the container y = 0

         v² = v₀² - 2 g (y-y₀)

         v = \sqrt{0 -2 g ( 0-y_o)}

let's calculate

         v = √(2 9.8 40.5)

         v = 28.17 m / s

this is the speed in the container v₁ = 28.17 m / s

the height from where it falls is y₂ = 40.5 and reaches the container y₁ = 0

we substitute in Bernoulli's equation

         P₁ +1/2 ρ g v₁² + 0 = P_{atm} + 0 + ρ g y₂

         P₁ + ½ ρ g v₁² = P_{atm} + ρ g y₂

         P₁ = P_{atm} + ρ g y₂ - ½ ρ g v₁²

         P₁ = 1 10⁵ + 1000 9.8 40.5 - ½ 1000 28.17²

         P₁ = 1 10⁵ + 3.97 10⁵ - 3.69 10⁵

         P₁ = 1.28 10⁵ Pa

The definition of Pressure is

         P = F / A

         F = P A

We must suppose a time to carry out the reading suppose an average time of the modern equipment t = 0.1 s, in this time how much is now arriving

          m₂ = 0.373 0.2 = 0.0746 l = 0.0746 10⁻³ m³

the volume is V = A l

if the length of l = 1 m

A = 0.0746 10⁻³ m³ = 7.45 10⁻⁵ m²

the force of this jet is

            F = P A

            F = 1.28 10⁵  7.46 10⁻⁵

            F = 9.5 N

with these data let's use the equilibrium equation

           F_ scale -W - F = 0

           F_scale = W + F

           F_scale = 10.682 + 9.5

           F_scale = 20.18 N

You might be interested in
The 59 converted into binary is _____.<br> How do we convert number to binary?
Viefleur [7K]

Answer:

111011

Explanation:

59/2 = 29, remainder is 1

29/2 = 14, remainder is 1

14/2 = 7, remainder is 0

7/2 = 3, remainder is 1

3/2 = 1, remainder is 1

1/2 = 0, remainder is 1

8 0
3 years ago
A stone tumbles into a mine shaft and strikes bottom after falling for 4.2 second how deep is the mine shaft
rjkz [21]
4.2*9.8\\41.16

41.16 meters
5 0
3 years ago
PLS HELP :) GIVING BRAINLIEST SIMPLE SCIENCE QUESTION HELPS PLSSSS
raketka [301]
OMG ITS B ITS B I HOPE I HELPED U
3 0
3 years ago
A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to
gizmo_the_mogwai [7]

Answer:

10s

Explanation:

Acceleration is a measure of a rate of change of velocity, or in other words, a measure of how quickly the velocity is changing.

If acceleration is constant, then the velocity is changing by a constant amount.

With an acceleration of 100 m/s^2, starting from the launching pad (and thus, an initial velocity of zero), we can calculate how long it will take to reach a final velocity of 1000m/s with the following formula:

v=at+v_o where "v" is the final velocity at some later time "t", "a" is the constant acceleration, and "v" sub-zero is the initial velocity.

v=at+v_o

(1000\text{ [m/s]})=(100 \text{ } [\text{m/s}^2] )t+(0\text{ [m/s]})

1000\text{ [m/s]}=100 \text{ } [\text{m/s}^2] *t

\dfrac{1000\text{ [m/s]}}{100 \text{ } [\text{m/s}^2]}=\dfrac{100 \text{ } [\text{m/s}^2] *t}{100 \text{ } [\text{m/s}^2]}

10\text{ [s]}=t

So, it will take 10 seconds for the rocket to reach 1000m/s when starting from the launching pad, with a constant velocity of 100m/s^2.

<u>Verification:</u>

In this situation, it is quick to verify that 10 seconds is correct by looking at what the velocities will be each second.

Recognizing that the acceleration is a=\dfrac{100 [\frac{m}{s}]}{1[s]}, the velocity increases by 100 units [m/s] every second.

At time 0[s], the velocity is 0[m/s]

At time 1[s], the velocity is 100[m/s]

At time 2[s], the velocity is 200[m/s]

At time 3[s], the velocity is 300[m/s]

At time 4[s], the velocity is 400[m/s]

At time 5[s], the velocity is 500[m/s]

At time 6[s], the velocity is 600[m/s]

At time 7[s], the velocity is 700[m/s]

At time 8[s], the velocity is 800[m/s]

At time 9[s], the velocity is 900[m/s]

At time 10[s], the velocity is 1000[m/s]

So, indeed, after 10 seconds, the velocity reaches 1000 m/s

5 0
2 years ago
Optical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweez
katrin [286]

Answer:

a= 4.4×10 m/s^2

Explanation:

pressure P  = E/c

Where, E = 100 W/m^2 intensity of light

c= speed of light  = 3×10^8 m/s

P = 1000/ 3×10^8

P = 3.33×10^(-6) Pa

Force F = P×A

  • P is the pressure and c= speed of light

F = 3.33×10^{-6}×6.65×10(-29)

= 2.22×10^{-6}

acceleration a  = F/m = 2.22×10^{-6}/ 5.10×10^{-27}

a= 4.4×10 m/s^2

4 0
3 years ago
Other questions:
  • What structure holds donor sperm in earthworms
    5·1 answer
  • Which of these is closest to the age of our solar system?
    9·1 answer
  • Technician A says that a MAF sensor is a high-authority sensor and is responsible for determining the fuel needs of the engine b
    7·1 answer
  • All light waves move through a vacuum with a constant speed. True or False
    8·1 answer
  • A fission reaction is one in which the weaker electrostatic repulsion force wins out over the ___________ nuclear force and, as
    12·2 answers
  • A cabinet weighing 100 N is placed on a floor. The amount of contact area between the cabinet and the floor is 0.5 m2. How much
    5·1 answer
  • You send a traveling wave along a particular string by oscillating one end. If you increase the frequency of oscillations, does
    12·1 answer
  • Based on the location of nitrogen (N) on the periodic table, how many additional electrons does a nitrogen atom need in its vale
    9·1 answer
  • 5. A 2000 kg truck has a momentum of 90,000 kg m/s. What is the velocity of the<br> truck?
    5·1 answer
  • How far apart are two conducting plates that have an electric field strength of 4. 4 kv/m between them, if their potential diffe
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!