1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
9

An LC circuit is built with a 20 mH inductor and an 8.0 PF capacitor. The capacitor voltage has its maximum value of 25 V at t =

0 s.(a)How much time does it take until the capacitor is fully discharged for the first time? (b)What is the inductor current at that time?
Physics
1 answer:
Margaret [11]3 years ago
8 0

Answer:

a) the required time is 0.6283 μs

b) the inductor current is 0.5 mA

Explanation:

Given the data in the question;

The capacitor voltage has its maximum value of 25 V at t = 0

i.e V_m = V₀ = 25 V

we determine the angular velocity;

ω = 1 / √( LC )

ω = 1 / √( ( 20 × 10⁻³ H ) × ( 8.0 × 10⁻¹² F) )

ω = 1 / √( 1.6 × 10⁻¹³  )

ω = 1 / 0.0000004

ω = 2.5 × 10⁶ s⁻¹

a) How much time does it take until the capacitor is fully discharged for the first time?

V_m =  V₀sin( ωt )

we substitute

25V =  25V × sin( 2.5 × 10⁶ s⁻¹ × t )

25V =  25V × sin( 2.5 × 10⁶ s⁻¹ × t )

divide both sides by 25 V

sin( 2.5 × 10⁶ × t ) = 1

( 2.5 × 10⁶ × t ) = π/2

t = 1.570796 / (2.5 × 10⁶)

t = 0.6283 × 10⁻⁶ s

t = 0.6283 μs

Therefore, the required time is 0.6283 μs

b) What is the inductor current at that time?

I(t) = V₀√(C/L) sin(ωt)

{ sin(ωt) = 1 )

I(t) = V₀√(C/L)

we substitute

I(t) = 25V × √( ( 8.0 × 10⁻¹² F ) / ( 20 × 10⁻³ H ) )

I(t) = 25 × 0.00002

I(t) = 0.0005 A

I(t) = 0.5 mA

Therefore, the inductor current is 0.5 mA

You might be interested in
A drag racer starts from rest and accelerates at 7.4 m/s2. How far will he travel in 2.0 seconds?
Leto [7]

Using the kinematic equation below we can determine the distance traveled if t=2, a=7.4m/s^2.  First we must determine the final velocity:

v_{final}=v_{initial}+\frac{1}{2}at\\\\v_{final}=0+(7.4m/s^2)(2s)=34.8m/s

Now we will determine the distance traveled:

v_{final}^2=v_{initial}^2+2a \Delta x\\\\\Delta x = \frac{v_{final}^2}{2a} =\frac{(34.8)^2}{(2)(7.4)}=81.83 m

Therefore, the drag racer traveled 81.83 meters in 2 seconds.

3 0
3 years ago
A 5kg wheel rolls off a flat roof of a 50 m tall building at 12m/s.
Olegator [25]

Explanation:

a) Given in the y direction (taking down to be positive):

Δy = 50 m

v₀ = 0 m/s

a = 10 m/s²

Find: t

Δy = v₀ t + ½ at²

50 m = (0 m/s) t + ½ (10 m/s²) t²

t = 3.2 s

b) Given in the x direction:

v₀ = 12 m/s

a = 0 m/s²

t = 3.2 s

Find: Δx

Δx = v₀ t + ½ at²

Δx = (12 m/s) (3.2 s) + ½ (0 m/s²) (3.2 s)²

Δx = 38 m

6 0
3 years ago
PLEASE HELP ME WITH THIS PROBLEM
valentinak56 [21]

1) The mass of the continent is 2.13\cdot 10^{21} kg

2) The kinetic energy of the continent is 274.8 J

3) The speed of the jogger must be 2.76 m/s

Explanation:

1)

The continent is a slab of side 5900 km (so the surface is 5900 x 5900, assuming it is a square) and depth 26 km, therefore its volume is:

V=(36)(4600)^2=7.62\cdot 10^8 km^3 = 7.62\cdot 10^{17} m^3

The mass of the continent is given by

m=\rho V

where:

\rho = 2790 kg/m^3 is its density

V=7.62\cdot 10^{17} m^3 is its volume

Substituting, we find the mass:

m=(2790)(7.62\cdot 10^{17})=2.13\cdot 10^{21} kg

2)

To find the kinetic energy, we need to convert the speed of the continent into m/s first.

The speed is

v = 1.6 cm/year

And we have:

1.6 cm = 0.016 m

1 year = (365)(24)(60)(60)=3.15\cdot 10^7 s

So, the speed is

v=\frac{0.016 m}{3.15 \cdot 10^7 s}=5.08\cdot 10^{-10}m/s

Now we can find the kinetic energy of the continent, which is given by

K=\frac{1}{2}mv^2

where

m=2.13\cdot 10^{21} kg is the mass

v=5.08\cdot 10^{-10}m/s is the speed

Substituting,

K=\frac{1}{2}(2.13\cdot 10^{21})(5.08\cdot 10^{-10})^2=274.8 J

3)

The jogger in this part has the same kinetic energy of the continent, so

K = 274.8 J

And its mass is

m = 72 kg

We can write his kinetic energy as

K=\frac{1}{2}mv^2

where

v is the speed of the man

And solving the equation for v, we find his speed:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(274.8)}{72}}=2.76 m/s

Learn more about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

3 0
3 years ago
If you were trying to describe the difference between power and work you could say:
avanturin [10]
Power is the energy transferred or "WORK DONE" in one second
6 0
3 years ago
Read 2 more answers
Compare and contrast microscopic and macroscopic energy transfer Give least three comparisons for each
Eduardwww [97]

Answer:

Differences

microscopic refers to substances visible to the naked eye

macroscopic are substances invisible to naked eye

Similarities

both refer to different scales that are useful to determining the size to different compounds.

Explanation:

Ima find more

3 0
3 years ago
Other questions:
  • Tim puts his spare change in a jar each day when he comes home. When the jar is full he separates the coins and takes them to th
    15·1 answer
  • What do all heterotrophs have in common?
    13·1 answer
  • How long will it take to travel 200,000 m traveling 100 m/s?
    7·1 answer
  • The number of neutrons in an atom is determined by which if the following means?
    7·2 answers
  • A 0.30-m-radius automobile tire accelerates from rest at a constant 2.0 rad/s2. What is the centripetal acceleration of a point
    5·1 answer
  • Electrons (mass m, charge –e) are accelerated from rest through a potential difference V and are then deflected by a magnetic fi
    13·1 answer
  • •• Al and Bert are jogging side-by-side on a trail in the woods at a speed of 0.75 m/s. Suddenly Al sees the end of the trail 35
    8·1 answer
  • 1. A group of students were trying to find the greatest
    5·1 answer
  • If an elephant has a net force of 10000 N downward while experiencing an upward force of 9000 N from air resistance, what is the
    5·1 answer
  • As best you can, describe how we can tell the age of the Earth and rocks found on it.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!