The study strategy Lauren is using in spreading her study sessions over a period of time is pacing, which helps the student develop a schedule focused on their own study pace.
<h3>Pacing Study Sessions</h3>
This study strategy of distributing the study into short sessions rather than studying the entire content through one long session is more effective in retaining content and learning.
What happens is that Lauren is using mass repetition processing, which can be compared to a longitudinal wave in physics, with spaces in between, concentrating the initial review close to the proof to ensure retention and avoid forgetting.
Through pacing, Lauren achieves greater motivation to carry out her studies in a concentrated and focused way, helping her to retain and preserve knowledge.
The correct answer is:
Find out more information about pacing here:
brainly.com/question/988371
Answer:
1.55 × 10²⁴ atoms Xe
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[Given] 57.5 L Xe at STP
[Solve] atoms Xe
<u>Step 2: Identify Conversions</u>
[STP] 22.4 L = 1 mol
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
1.54583 × 10²⁴ atoms Xe ≈ 1.55 × 10²⁴ atoms Xe
Because the ring is hollow
Answer : The final number of moles of gas that withdrawn from the tank to lower the pressure of the gas must be, 0.301 mol.
Explanation :
As we know that:

At constant volume and temperature of gas, the pressure will be directly proportional to the number of moles of gas.
The relation between pressure and number of moles of gas will be:

where,
= initial pressure of gas = 24.5 atm
= final pressure of gas = 5.30 atm
= initial number of moles of gas = 1.40 moles
= final number of moles of gas = ?
Now put all the given values in the above expression, we get:


Therefore, the final number of moles of gas that withdrawn from the tank to lower the pressure of the gas must be, 0.301 mol.
Answer:
77,007 Pa
Explanation:
Hello!
In this case, since the equivalence statement for atmospheres and pascals is:
1 atm = 101,325 Pa
We can set up the following conversion factor to obtain the pressure in pascals:

Best regards!