
<em>Chemists use the mole unit to represent 6.022 × 10 23 things, whether the things are atoms of elements or molecules of compounds. This number, called Avogadro's number, is important because this number of atoms or molecules has the same mass in grams as one atom or molecule has in atomic mass units. </em>
hope helpful~
The subatomic particles that identifies an element and also represents its atomic number would be A. The number of protons.
Answer:
P₂ ≅ 100 atm (1 sig. fig. based on the given value of P₁ = 90 atm)
Explanation:
Given:
P₁ = 90 atm P₂ = ?
V₁ = 18 Liters(L) L₂ = 12 Liters(L)
=> decrease volume => increase pressure
=> volume ratio that will increase 90 atm is (18L/12L)
T₁ = 272 Kelvin(K) T₂ = 274 Kelvin(K)
=> increase temperature => increase pressure
=> temperature ratio that will increase 90 atm is (274K/272K)
n₁ = moles = constant n₂ = n₁ = constant
P₂ = 90 atm x (18L/12L) x (274K/272K) = 135.9926471 atm (calculator)
By rule of sig. figs., the final answer should be rounded to an accuracy equal to the 'measured' data value having the least number of sig. figs. This means P₂ ≅ 100 atm based on the given value of P₁ = 90 atm.
Which is an example of a compound? sand, gold, water, or iodine? well, the answer is water, water is a compound.
Balance the reaction first:
3KOH + H3PO4 —> K3PO4 + 3H2O
So for every mol of H3PO4, you need 3 mol of OH- to fully neutralize the acid, since H3PO4 is polyprotic.
0.0200 L KOH • (2.000 mol KOH / L KOH) • (1 mol H3PO4 / 3 mol KOH) = 0.0133 mol H3PO4
Divide this by the volume of H3PO4 to get the concentration.
0.0133 mol H3PO4 / 0.0250 L = 0.532 M H3PO4