<u>Answer:</u> The uncertainty in the velocity of oxygen molecule is 
<u>Explanation:</u>
The diameter of the molecule will be equal to the uncertainty in position.
The equation representing Heisenberg's uncertainty principle follows:

where,
= uncertainty in position = d = 
= uncertainty in momentum = 
m = mass of oxygen molecule = 
h = Planck's constant = 
Putting values in above equation, we get:

Hence, the uncertainty in the velocity of oxygen molecule is 
Answer:
Scale is the right answer
Explanation:
The scale is a sentence that relates distance on the map to distance on Earth
The result which occurs during an exothermic reaction is: C. Light and heat are released into the environment.
A chemical reaction is defined as a chemical process involving the continuous transformation and rearrangement of either the ionic, atomic or molecular structure of chemical elements, especially through the breakdown and formation of chemical bonds, so as to produce a new chemical compound.
Basically, the two (2) main types of chemical reaction are;
- <u>Endothermic reaction:</u> this is a chemical reaction in which heat is absorbed
.
<u>Exothermic reaction:</u> this is a chemical reaction in which light and heat is liberated (released) into the environment.
In an exothermic chemical reaction, light and heat energy is liberated (released) when the energy of the products is lesser than the energy of the reactants.
In conclusion, light and heat is liberated (released) into the environment during an exothermic reaction.
Read more: brainly.com/question/24222328
<h3>
Answer:</h3>
Initial temperature is 243.59°C
<h3>
Explanation:</h3>
The quantity of heat is calculated by multiplying the mass of a substance by its specific heat capacity and change in temperature.
That is; Q = m×c×ΔT
In this case;
Quantity of heat = 560 J
Mass of the Sample of Zinc = 10 g
Final temperature = 100°C
We are required to determine the initial temperature;
This can be done by replacing the known variables in the formula of finding quantity of heat,
Specific heat capacity, c, of Zinc = 0.39 J/g.°C
Therefore,
560 J = 10 g × 0.39 J/g°C × ΔT
ΔT = 560 J ÷ (3.9 J/°C)
= 143.59°C
But, since the sample of Zinc lost heat then the temperature change will have a negative value.
ΔT = -143.59°C
Then,
ΔT = T(final) - T(initial)
Therefore,
T(initial) = T(final) - ΔT
= 100°C - (-143.59°C)
= 243.59°C
Hence, the initial temperature of zinc sample is 243.59°C