Answer:
a. True
Explanation:
Illumination distance is the distance, up to which the light of the vehicle can reach. Hence, it is a maximum distance from the, that driver can see.
Stopping distance is the minimum distance required by the car to stop after brakes are applied.
So, in order to avoid any accident the illumination distance must be greater than the stopping distance. So, the driver can stop the vehicle in time, when he sees something in front of it.
Since, the stopping distance in this case is two or three times longer than illumination distance. Therefore, low beam light does not provide enough visibility in high speed driving situations.
Hence, the correct option is:
<u>a. True</u>
<u></u>
Answer:
V = 26.95 cm³
Explanation:
Density is given by the formula :
ρ = m÷V
Density = mass ÷ Volume
Given both density and mass we rearrange, substitute and solve for Volume :
Rearranging the equation to make Volume the subject :
ρ = m÷V
ρV = m
V = m÷ ρ
Now substitute :
V = 45 ÷ 1.67
V = 26.9461077844
Take 2 decimal places as the density is 2 decimal places :
V = 26.95
Units will be cm³ as it is volume
Hope this helped and have a good day
Well, if I understand correctly, I think it'd be 60, because 60+60= 120, but I may be wrong. It's not my best subject, but why not try to help even though I suck lol.
Answer:
a = (v2 - v1) / t
From A to B (8 - 4) m/s / 1 s = 4 m / s^2
From A to D ( 7 - 4) m/s / 5 s = .6 m / s^2
Note these equations hold for "uniform" values
They say nothing about the acceleration at intermediate points - the equation just says that his average speed increased from 4 m/s to 7 m/s during a 5 sec period
Answer: the pair of sunglasses
Explanation:
A good pair of sunglasses are composed of abosorbent lenses that filter the sunlight that affects the eyes retina, especially ultraviolet (UV). So, these sunglasses are used to reduce the amount of light or radiant energy transmitted.
On the other hand, normal reading glasses (in which the lens glass has not been treated to filter ultraviolet sunlight) will let UV rays pass through.
Therefore, if both glasses are exposed to sunlight, the sunglasses are expected to be warmer by absorbing that radiant energy and preventing it from reaching the eyes.