Answer:I can't see any question
Answer:
First ionization of lithium:
.
Second ionization of lithium:
.
Explanation:
The ionization energy of an element is the energy required to remove the outermost electron from an atom or ion of the element in gaseous state. (Refer to your textbook for a more precise definition.) Some features of the equation:
- Start with a gaseous atom (for the first ionization energy only) or a gaseous ion. Write the gaseous state symbol
next to any atom or ion in the equation. - The product shall contain one gaseous ion and one electron. The charge on the ion shall be the same as the order of the ionization energy. For the second ionization energy, the ion shall carry a charge of +2.
- Charge shall balance on the two sides of the equation.
First Ionization Energy of Li:
- The products shall contain a gaseous ion with charge +1
as well as an electron
. - Charge shall balance on the two sides. There's no net charge on the product side. Neither shall there be a charge on the reactant side. The only reactant shall be a lithium atom which is both gaseous and neutral:
.
- Hence the equation:
.
Second Ionization Energy of Li:
- The product shall contain a gaseous ion with charge +2:
as well as an electron
. - Charge shall balance on the two sides. What's the net charge on the product side? That shall also be the charge on the reactant side. What will be the reactant?
- The equation for this process is
.
The ions formed are NH4(+) and S(2-)
The dissolution reaction of (NH4) 2S in water is as follows:
(NH4) 2S ==> 2 NH4 (+) + S (2-).
Ammonium sulfide is the ammonium salt of hydrogen sulfide. It has the formula (NH4) 2S and belongs to the sulfide family.
It is a relatively unstable compound (crystals decomposing at -18 ° C, but exists and is more stable in aqueous solution.) With a pKa exceeding 15, the hydrosulfide ion cannot be significantly deprotonated by ammonia. Thus, such solutions consist mainly of a mixture of ammonia and hydrosulphide of ammonium, it has a smell, close to that of hydrogen sulfide, and its aqueous solutions can be precisely by emitting H2S.
The value of ΔG° at this temperature is -18034.18 J/mol
Calculation,
Given information
formation constant (Kf)= 1.7 × 
Universal gas constant (R) = 8.314 J/K• mol
Temperature = 25° C = 25 °C + 273 = 300 K
Formula used:
ΔG° = -RT㏑Kf
By putting the valur of R,T, Kf we get the value of ΔG°
ΔG° = - 8.314 J/K• mol×300K㏑ 1.7 × 
ΔG° = -2494.2㏑ 1.7 ×
= -18034.18 J/mol
So, change in standard Gibbs's free energy is -18034.18 J/mol
Learn about formation constant
brainly.com/question/14011682
#SPJ4
<span>At room temperature and atmospheric pressure, nothing happens when the two gasses are mixed. However, at high temperature and pressure (450C, 200atm), in the presence of an iron oxide catalyst, the production of ammonia is thermodynamically advantageous.</span>