Answer:
A. N₂(g) + 3H₂(g) -----> 2NH₃ exothermic
B. S(g) + O₂(g) --------> SO₂(g) exothermic
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) endothermic
D. 2F(g) ---------> F₂(g) exothermic
Explanation:
The question says predict not calculate. So you have to use your chemistry knowledge, experience and intuition.
A. N₂(g) + 3H₂(g) -----> 2NH₃ is exothermic because the Haber process gives out energy
B. S(g) + O₂(g) --------> SO₂(g) is exothermic because it is a combustion. The majority, if not all, combustion give out energy.
C. 2H₂O(g) --------> 2H₂(g) + O₂(g) is endothermic because it is the reverse reaction of the combustion of hydrogen. If the reverse reaction is exothermic then the forward reaction is endothermic
D. 2F(g) ---------> F₂(g) is exothermic because the backward reaction is endothermic. Atomisation is always an endothermic reaction so the forward reaction is exothermic
2-Methyl-4-oxo-pentanoic acid is unlikely to produce 2-Methyl-3-butanone upon strong heating.
Upon heating, the β ketoacid becomes unstable and decarboxylates, leading to the formation of the methyl ketone.
A carboxylic acid is an organic acid that contains a carboxyl group (C(=O)OH) attached to an R-group. The general formula of a carboxylic acid is R−COOH or R−CO2H, with R referring to the alkyl, alkenyl, aryl, or other group.
Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.
Full question :
Q. Which reactant is unlikely to produce the indicated product upon strong heating?
- A) 2,2-Dimethylpropanedioic acid 2-methylpropanoic acid
- B) 2-Ethylpropanedioic acid Butanoic acid
- C) 2-Methyl-3-oxo-pentanoic acid 3-Pentanone
- D) 2-Methyl-4-oxo-pentanoic acid 2-Methyl-3-butanone
- E) 4-Methyl-3-oxo-heptanoic acid 3-Methyl-2-hexanone
Hence, option (D) is correct.
Learn more about carboxylic acid here : brainly.com/question/26855500
#SPJ4
Answer:
13,200 mL
Explanation:
multiply by 1000 to go from L to mL
It is 2.1 x 10^3 because your base number needs to be in between 1 and 10, and the number you are converting is non-decimal, so the exponent is positive. It is 10^3 because you are moving the decimal 3 places to the right
Answer:
it's the chloroplast but I'm not sure which on is it it might be the F.