Answer:
4.45×10¯¹¹ N
Explanation:
From the question given above, the following data were obtained:
Mass of ball (M₁) = 4 Kg
Mass of bowling pin (M₂) = 1.5 Kg
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Distance apart (r) = 3 m
Force of attraction (F) =?
The force of attraction between the ball and the bowling pin can be obtained as follow:
F = GM₁M₂ / r²
F = 6.67×10¯¹¹ × 4 × 1.5 / 3²
F = 4.002×10¯¹⁰ / 9
F = 4.45×10¯¹¹ N
Therefore, the force of attraction between the ball and the bowling pin is 4.45×10¯¹¹ N
Answer:
Increase the work being done or decrease the time in which the work is completed
Explanation:
I got it right on the quiz i just took :)
Answer:
The phase constant is 7.25 degree
Explanation:
given data
mass = 265 g
frequency = 3.40 Hz
time t = 0 s
x = 6.20 cm
vx = - 35.0 cm/s
solution
as phase constant is express as
y = A cosФ ..............1
here A is amplitude that is =
=
= 6.25 cm
put value in equation 1
6.20 = 6.25 cosФ
cosФ = 0.992
Ф = 7.25 degree
so the phase constant is 7.25 degree
K.E. = 1/2 mv²
K.E. is directly proportional to v^2
So, when K.E. increase by 2, K.E. increase by root. 2
v' = 1.41v
original v value was 3 so, final would be:
v' = 1.41*3 = 4.23
After round-off to it's tenth value, it will be:
v' = 4.2
So, option B is your answer!
Hope this helps!
Conduction. Any material that easily allows heat to move through it. Vacuum. A region of space that contains no matter. Solid.