1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uranmaximum [27]
4 years ago
13

A fullback preparing to carry the football starts from rest and accelerates straight ahead. He is handed the ball just before he

reaches the line of scrimmage. Assume that the fullback accelerates uniformly (even during the handoff), reaching the line with a velocity of 7.60 m/s. If he takes 1.07 s to reach the line, how far behind it did he start?
Physics
1 answer:
RideAnS [48]4 years ago
4 0

Answer:

x=4.06m

Explanation:

A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.

When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf=Vo+a.t  (1)\\\\

{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\

X=Xo+ VoT+0.5at^{2}    (3)\\

Where

Vf = final speed

Vo = Initial speed

T = time

A = acceleration

X = displacement

In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve

for this problem

Vf=7.6m/s

t=1.07

Vo=0

we can use the ecuation number one to find the acceleration

a=(Vf-Vo)/t

a=(7.6-0)/1.07=7.1m/s^2

then we can use the ecuation number 2 to find the distance

{Vf^{2}-Vo^2}/{2.a} =X

(7.6^2-0^2)/(2x7.1)=4.06m

You might be interested in
What is the heart rate recorded a few minutes after completing a workout?
DochEvi [55]
Correct answer should be C
8 0
3 years ago
Read 2 more answers
. A rope is being used to pull a mass of 10 kg vertically upward. Determine the tension on the rope, if starting from rest, the
telo118 [61]

\text{Given that,}\\\\\text{Mass, m =10 kg}\\\\\text{Time, t = 8 sec}\\\\\text{Velocity, v = 4~m/s}\\\\\text{When a body is moving upwards,}\\\\\text{Tension,}~ T=mg +ma\\\\~~~~~~~~~~~~~~~=mg+m\left(\dfrac{v-u}t \right)\\\\~~~~~~~~~~~~~~~=10(10)+10\left(\dfrac{4-0}8\right)\\\\~~~~~~~~~~~~~~~=100+10\left(\dfrac 12\right)\\\\~~~~~~~~~~~~~~~=100+5\\\\~~~~~~~~~~~~~~~=105~N

5 0
2 years ago
Through which medium is it impossible to transmit sound waves?.
dusya [7]

Answer: vacuum

Explanation: The vacuum is the medium from where the sound wave cannot pass. A vacuum is basically an area without any air. Since the sound wave is a mechanical wave that's why it cannot travel through a medium where there is no matter of vibrations to works in, i.e, it can't travel through a vacuum.

4 0
3 years ago
The driver of a 2.0 × 10³ kg red car traveling on the highway at 45m/s slams on his brakes to avoid striking a second yellow car
nignag [31]

Answer:

Explanation:

a = F/m = 7500/2000 = 3.75 m/s²

v² = u² + 2as

s = (v² - u²) / 2a

s = (0² - 45²) / (2(-3.75))

s = 270 m

6 0
2 years ago
A cannon is fired from the edge of a cliff, which is 60m above the sea. The cannonball's initial velocity is 88.3m/s and it is f
wel

Answer:

a. 11.29 s b. 94.72 m/s at -39.8° c. 821.57 m​

Explanation:

a. Using y - y₀ = ut - 1/2gt² where u = vertical component of velocity = v₀sinθ where v₀ = 88.3 m/s and θ = 34.5°, y₀ = + 60 m and y = water surface = 0 m, g = 9.8 m/s² and t = time it takes the cannon to reach the water surface.

So y - y₀ = ut - 1/2gt²

y - y₀ = (v₀sinθ)t - 1/2gt²

substituting the values of the variables into the equation, we have

0 - 60 = (88.3 m/s × sin34.5°)t - 1/2 × 9.8 m/s²× t²

- 60 = 50t - 4.9t²

So, 4.9t² - 50t - 60 = 0

Using the quadratic formula to find t,

t = \frac{-(-50) +/- \sqrt{(-50)^{2} - 4 X 4.9 X -60} }{2 X 4.9} \\t = \frac{50 +/- \sqrt{2500 + 1176} }{9.8} \\t = \frac{50 +/- \sqrt{3676} }{9.8} \\t = \frac{50 +/- 60.63 }{9.8} \\t = \frac{50 + 60.63 }{9.8} or t = \frac{50 - 60.63 }{9.8} \\t = \frac{110.63 }{9.8} or t = \frac{-10.63 }{9.8} \\t = 11.29 sor -1.085

Since t cannot be negative, t = 11.29 s

b. We first need to find the impact vertical velocity component. Using

v = u - gt where u = initial vertical velocity component = v₀sinθ  and t = 11.29 s and g = 9.8 m/s². So,

v = v₀sinθ - gt

= 88.3 m/s × sin34.5° - 9.8 m/s² × 11.29 s

= 50.01 m/s - 110.64 m/s

= -60.63 m/s

Since the horizontal velocity is constant u' = v₀cosθ = 88.3 m/s × cos34.5° = 72.77 m/s.

The impact velocity is thus the resultant of the horizontal velocity and final impact velocity. So, V = √(v² + u'²)

= √((-60.63 m/s)² + (72.77 m/s)²)

= √((3676 m²/s² + 5295.48 m²/s²)

= √(8971.48 m²/s²

= 94.72 m/s

The angle θ = tan⁻¹(v/u') = tan⁻¹(-60.63 m/s ÷ 72.77 m/s) = tan⁻¹(-0.8332) = -39.8°

So the impact velocity is 94.72 m/s at -39.8°

c. The horizontal distance out from the base of the cliff that the ball strikes the water is the range, R = u't = 72.77 m/s × 11.29 s = 821.57 m​

5 0
3 years ago
Other questions:
  • Thr frequency of a wave traveling throught the air of a hot, dry desert is 1,200 hertz. Its wavelength is 0.300 meters. What is
    13·1 answer
  • A 650 × 10–4 F capacitor stores 24 × 10–3 of charge.
    13·1 answer
  • Consider a blackbody that radiates with an intensity i1 at a room temperature of 300k. At what intensity i2 will this blackbody
    14·1 answer
  • The apparent displacement of an object as it is viewed from two different positions is known as
    9·1 answer
  • Consider a person sliding down a water slide at constant velocity. what are the forces acting on the person as they slide? are t
    7·2 answers
  • PLZ HELP ME i don’t get this
    12·1 answer
  • An object is travelling in a straight line. The diagram is the speed-time graph for
    15·1 answer
  • If a car starts from rest and attains a velocity of 10m/square in 5 secondscalculate the accerleration​
    14·2 answers
  • I need help with this, Help me
    6·1 answer
  • Sheila weighs 60 kg and is riding a bike. Her momentum on the bike is 340 kg • m/s. The bike hits a rock, which stops it complet
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!