Volume will decrease if the heat remains constant
Answer:
a) τ = 0.672 N m
, b) θ = 150 rad
, c) W = 100.8 J
Explanation:
a) for this part let's start by finding angular acceleration, when the angular velocity stops it is zero (w = 0)
w = w₀ + α t
α = -w₀ / t
α = 120 / 2.5
α = 48 rad / s²
The moment of inertia of a cylinder is
I = ½ M R²
Let's calculate the torque
τ = I α
τ = ½ M R² α
τ = ½ 2.8 0.1² 48
τ = 0.672 N m
b) we look for the angle by kinematics
θ = w₀ t + ½ α t2
θ = ½ α t²
θ = ½ 48 2.5²
θ = 150 rad
c) work in angular movement
W = τ θ
W = 0.672 150
W = 100.8 J
Answer:
0.0061 J
Explanation:
Parameters given:
Number of turns, N = 111
Radius of turn, r = 2.11 cm = 0.0211 m
Resistance, R = 14.1 ohms
Time taken, t = 0.125 s
Initial magnetic field, Bin = 0.669 T
Final magnetic field, Bfin = 0 T
The energy dissipated in the resistor is given as:
E = P * t
Where P = Power dissipated in the resistor
Power, P, is given as:
P = V² / R
Hence, energy will be:
E = (V² * t) / R
To find the induced voltage (EMF), V:
EMF = [-(Bfin - Bin) * N * A] / t
A is Area of coil
EMF = [-(0 - 0.669) * 111 * pi * 0.0211²] / 0.125
EMF = 0.83 V
Hence, the energy dissipated will be:
E = (0.83² * 0.125) / 14.1
E = 0.0061 J
Answer: The answer is 333.3333 repeating
Explanation:
Divide the mass by the volume.
Explanation:
this is the answer for your question if you have any doubt you can join