Answer : The final pressure in the two containers is, 2.62 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

Thus, the expression for final pressure in the two containers will be:


where,
= pressure of N₂ gas = 4.45 atm
= pressure of Ar gas = 2.75 atm
= volume of N₂ gas = 3.00 L
= volume of Ar gas = 2.00 L
P = final pressure of gas = ?
V = final volume of gas = (4.45 + 2.75) L = 7.2 L
Now put all the given values in the above equation, we get:


Thus, the final pressure in the two containers is, 2.62 atm
Answer:
Use Fc centripetal force as positive and W the weight as negative
N = m v^2 / R + m g
v^2 = (N - m g) R / m
v^2 = (995 - 57 * 9.8) 42.7 / 57 = 327 m^2/s^2
v = 18.1 m/s
Note: N - m g is the net force producing the centripetal force
Answer:
Explanation:
According to first law of thermodynamics:
∆U= q + w
= 10kj+(-70kJ)
-60kJ
, w = + 70 kJ
(work done on the system is positive)
q = -10kJ ( heat is given out, so negative)
∆U = -10 + (+70) = +60 kJ
Thus, the internal energy of the system decreases by 60 kJ.
Answer:

Explanation:
F » Force
B » Magnetic flux density
e » magnitude of charge
v » voltage
Answer:
Q₂ = 5833.33 J
Explanation:
First we need to find the energy supplied to the heat engine. The formula for the efficiency of the heat engine is given as:
η = W/Q₁
where,
η = efficiency of engine = 30% = 0.3
W = Work done by engine = 2500 J
Q₁ = Heat supplied to the engine = ?
Therefore,
0.3 = 2500 J/Q₁
Q₁ = 2500 J/0.3
Q₁ = 8333.33 J
Now, we find the heat discharged to lower temperature reservoir by using the formula of work:
W = Q₁ - Q₂
Q₂ = Q₁ - W
where,
Q₂ = Heat discharged to the lower temperature reservoir = ?
Therefore,
Q₂ = 8333.33 J - 2500 J
<u>Q₂ = 5833.33 J</u>