If you drop a 50 gram piece of metal that has a temperature of 110°Celsius into 1000 grams of water at 25°Celsius, <span>D.)The water and the metal’s temperature will reach the same temperature. In any system undergoing heat transfer, the objects involved will eventually reach the same temperature, signifying thermal equilibrium.</span>
Answer:
20%
Explanation:
Relative Humidity (%) = (water vapor content÷water vapor capacity) × 100
=(7÷35)×100
=(0.2)×100
=20%
According to the Temperature-Water Vapor Capacity Table, the water capacity at 35 °C is 35 grams.
Water Vapor Capacity: The amount of water (grams) which air can hold at a given temperature.
Water Vapor Content: The amount of water vapor actually present in the air.
Answer:
The samples specific heat is 14.8 J/kg.K
Explanation:
Given that,
Weight = 28.4 N
Suppose, heat energy 
Temperature = 18°C
We need to calculate the samples specific heat
Using formula of specific heat


Where, m = mass
c = specific heat
= temperature
Q = heat
Put the value into the formula


Hence, The samples specific heat is 14.8 J/kg.K
Answer: pick A moves 10.2 metre
Explanation: since they were given a quick push simultaneously the product of their distance moved and velocity would be equal.
Let the distance moved by puck B x then that of puck A would be 18-x.
So therefore we have that,
1.3*(18-x) = 1.7*x
23.4 - 1.3x = 1.7x
23.4=3x
Making x subject of formula we have
x = 23.4/3 = 7.8m
But the distance moved by puck A is 18-x. So therefore,
18-7.8=10.2meter
Answer:
The difference between the cost of operating LED and incandescent bulb is $5.1
Explanation:
We are given the cost of electricity that is 12.75 cents per kWh. We want to find out the difference in the operating cost of an incandescent and LED bulb for a time period of 2,000 hours.
Since we are not given the rating of the incandescent bulb and LED bulb, we will assume their ratings.
For a light intensity of 250 Lumens;
The average rating of an LED bulb is approximately 5 Watts.
The average rating of an incandescent bulb is approximately 25 Watts.
Now lets find out the kWh of each bulb.
Energy = Power×Time
For LED bulb:
E = 5×2,000 = 10,000 Wh
Divide by 1000 to convert into kWh
E = 10,000/1000 = 10 kWh
Cost = 12.75×10 = 127.5 cents
Cost = $1.27
For Incandescent bulb:
E = 25×2,000 = 50,000 Wh
Divide by 1000 to convert into kWh
E = 50,000/1000 = 50 kWh
Cost = 12.75×50 = 637.5 cents
Cost = $6.37
Difference in Cost:
Difference = $6.37 - $1.27 = $5.1
Therefore, the difference between the cost of operating LED and incandescent bulb is $5.1.