By looking at the potential energies before and after the reaction, we can tell that the reaction is exothermic (final < initial) or endodermic (final > initial).
Also, the amount of activation energy gives an idea of the external energy required to initiate the reaction (for example, by heating the reactants).
Furthermore, by the same principle, we can also deduce the activation energy for the reverse reaction.
If a catalyst is available, the diagram will show a reduced activation energy, compared to a reaction without catalyst. However, it will also show that the catalyst does not alter the initial and final energies of the reaction.
<span>The correct answer is C:Waves transfer energy, but not matter. A wave does not move matter in the direction of its propagation. It only transfers energy just like the ocean wave traveling many miles away with the water just moving up and down.</span>
The particles of the liquid inside a thermometer speed up and spread apart when the thermometer is heated. In short, the particles expand from one another when they're heated, and become condensed and compact when chilled.