Answer:
t=7.33 s
Explanation:
According to Newton's second law:

because we don't want the box to slide, the acceleration has to be zero.

we know that:

Now having the acceleration, we can use the following formula.

<span>What you need to do while answering this questions, is ask yourself what has cells - only if a thing has cells can you see those cells under a microscope. Objects of animal and plant origin have cells, so blood, plant and cork (made of tree bark) can have cells, and a box too, if it's made of wood. So we can''t exclude any answers based on this. We must then know the story of Robert Hook - and it was in fact a cork. He did this discovery around 1655. At the time his main interest was the microscope rather than the cork, and he used to cork to demonstrate the function of the microscope. The correct answer is CORK.</span>
The moment of inertia of a uniform solid sphere is equal to 0.448
.
<u>Given the following data:</u>
Mass of sphere = 7 kg.
Radius of sphere = 0.4 meter.
<h3>How to calculate moment of inertia.</h3>
Mathematically, the moment of inertia of a solid sphere is given by this formula:

<u>Where:</u>
- I is the moment of inertia.
Substituting the given parameters into the formula, we have;

I = 0.448
.
Read more on inertia here: brainly.com/question/3406242
To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.
The work done would be defined as

Where,
PE = Potential Energy
KE = Kinetic Energy

Where,
m = Mass
g = Gravitational energy
h = Height
v = Velocity
Considering power as the change of energy as a function of time we will then have to


The rate of mass flow is,

Where,
= Density of water
A = Area of the hose 
The given radius is 0.83cm or
m, so the Area would be


We have then that,



Final the power of the pump would be,



Therefore the power of the pump is 57.11W