Answer:
f1 = 12.90 Hz
Explanation:
To calculate the first harmonic frequency you use the following formula for n = 1:

( 1 )
It is necessary that the unist are in meters, then you have:
L: length of the string = 60cm = 0.6m
M: mass of the string = 0.05kg
T: tension on the string = 20 N
you replace the values of L, M and T in the expression (1) for getting f1:

Hence, the first harmonic has a frequency of 12.90 Hz
31.3m/s
Explanation:
Given parameters:
Mass of rock = 40kg
Height of cliff = 50m
Unknown:
Speed of rock when it hits ground = ?
Solution:
We are going to use the appropriate motion equation to solve this problem
The rock is falling with the aid of gravitational force. The force is causing it to accelerate with an amount of velocity.
Using;
V² = U² + 2gH
V = unknown velocity
U = initial velocity = O
g = acceleration due to gravity = 9.8m/s²
H = height of fall
since the initial velocity of the bodyg is 0
V² = 2gH
V= √2gH = √2 x 9.8 x 50 = 31.3m/s
learn more:
Velocity brainly.com/question/4460262
#learnwithBrainly
Reuptake refers to the REABSORPTION of excess neurotransmitter molecules by a sending neuron (Option b).
Reuptake is the mechanism by which cells reabsorb chemical messengers produced and secreted by them. In nerve terminals, reuptake is used to reabsorb released neurotransmitters.
The reuptake mechanism is exploited in therapeutics for the development of target drugs and treatments.
Serotonin is a neurotransmitter that acts to stabilize different emotions such as mood, feelings of well-being, appetite and happiness.
For example, serotonin reuptake inhibitors which are capable of blocking the reuptake of serotonin to modulate serotonin brain levels have recently been developed.
Learn more in:
brainly.com/question/4439815?referrer=searchResults
Question:
A 63.0 kg sprinter starts a race with an acceleration of 4.20m/s square. What is the net external force on him? If the sprinter from the previous problem accelerates at that rate for 20m, and then maintains that velocity for the remainder for the 100-m dash, what will be his time for the race?
Answer:
Time for the race will be t = 9.26 s
Explanation:
Given data:
As the sprinter starts the race so initial velocity = v₁ = 0
Distance = s₁ = 20 m
Acceleration = a = 4.20 ms⁻²
Distance = s₂ = 100 m
We first need to find the final velocity (v₂) of sprinter at the end of the first 20 meters.
Using 3rd equation of motion
(v₂)² - (v₁)² = 2as₁ = 2(4.2)(20)
v₂ = 12.96 ms⁻¹
Time for 20 m distance = t₁ = (v₂ - v ₁)/a
t₁ = 12.96/4.2 = 3.09 s
He ran the rest of the race at this velocity (12.96 m/s). Since has had already covered 20 meters, he has to cover 80 meters more to complete the 100 meter dash. So the time required to cover the 80 meters will be
Time for 100 m distance = t₂ = s₂/v₂
t₂ = 80/12.96 = 6.17 s
Total time = T = t₁ + t₂ = 3.09 + 6.17 = 9.26 s
T = 9.26 s