Answer:
They can be seen from a distance of 4.372 kilometers.
Explanation:
Using the Reyligh creterion for diffraction through a circular aperture we have
where symbol's have their usual meaning
thus applying values we get


Part a)
At t = 0 the position of the object is given as

At t = 2

so displacement of the object is given as

so average speed is given as

Part b)
instantaneous speed is given by


now at t= 0

at t = 1


at t = 2

Part c)
Average acceleration is given as



Part d)
Now for instantaneous acceleration
As we know that

at t = 0

at t = 1

now we have

At t = 2 we have



<em>so above is the instantaneous accelerations</em>
Answer:
If it points the other way, the fields subtract, for a lower energy, and so the magnet prefers to turn to point in this way. Magnets in uniform fields feel torques which make them turn around if they are not pointing in the right direction, but there is no net force making the magnet want to levitate.
Explanation:
Explanation:
1) N₂ + O₂ → 2 NO
Kc = [NO]² / ([N₂] [O₂])
Set up an ICE table:
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\N_{2}&0.114&-x&0.114-x\\O_{2}&0.114&-x&0.114-x\\NO&0&+2x&2x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%26Initial%26Change%26Equilibrium%5C%5CN_%7B2%7D%260.114%26-x%260.114-x%5C%5CO_%7B2%7D%260.114%26-x%260.114-x%5C%5CNO%260%26%2B2x%262x%5Cend%7Barray%7D%5Cright%5D)
Plug into the equilibrium equation and solve for x.
1.00×10⁻⁵ = (2x)² / ((0.114 − x) (0.114 − x))
1.00×10⁻⁵ = (2x)² / (0.114 − x)²
√(1.00×10⁻⁵) = 2x / (0.114 − x)
0.00316 = 2x / (0.114 − x)
0.00361 − 0.00316x = 2x
0.00361 = 2.00316x
x = 0.00018
The volume is 1.00 L, so the concentrations at equilibrium are:
[N₂] = 0.114 − x = 0.11382
[O₂] = 0.114 − x = 0.11382
[NO] = 2x = 0.00036
2(a) Cl₂ → 2 Cl
Kc = [Cl]² / [Cl₂]
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\Cl_{2}&2.0&-x&2.0-x\\Cl&0&+2x&2x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%26Initial%26Change%26Equilibrium%5C%5CCl_%7B2%7D%262.0%26-x%262.0-x%5C%5CCl%260%26%2B2x%262x%5Cend%7Barray%7D%5Cright%5D)
1.2×10⁻⁷ = (2x)² / (2 − x)
1.2×10⁻⁷ (2 − x) = 4x²
2.4×10⁻⁷ − 1.2×10⁻⁷ x = 4x²
2.4×10⁻⁷ ≈ 4x²
x² ≈ 6×10⁻⁸
x ≈ 0.000245
2x ≈ 0.00049
2(b) F₂ → 2 F
Kc = [F]² / [F₂]
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\F_{2}&2.0&-x&2.0-x\\F&0&+2x&2x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%26Initial%26Change%26Equilibrium%5C%5CF_%7B2%7D%262.0%26-x%262.0-x%5C%5CF%260%26%2B2x%262x%5Cend%7Barray%7D%5Cright%5D)
1.2×10⁻⁴ = (2x)² / (2 − x)
1.2×10⁻⁴ (2 − x) = 4x²
2.4×10⁻⁴ − 1.2×10⁻⁴ x = 4x²
2.4×10⁻⁴ ≈ 4x²
x² ≈ 6×10⁻⁵
x ≈ 0.00775
2x ≈ 0.0155
F₂ dissociates more, so Cl₂ is more stable at 1000 K.
How am I supposed to know the momentum of anything ? What does it matter