Here is the answer that completes the statement above. We can study how galaxies evolve because THE FARTHER AWAY WE LOOK, THE FURTHER BACK IN TIME WE SEE. This means that the more we discover more about what's happening in the universe, the more we become curious to know how and when it began. Hope this helps.
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

The answer to your question is metaphase
Answer:
Not the right answer in the options, speed is 4.47 m/s, and the procedure is coherent with option A
Explanation:
Answer A uses mass and velocity units, which are momentum units. By using the conservation of momentum:
.
Since Tom stays in the raft, then both are moving with the same speed. From the options, the momentum is in agreement with option A, however, the question asks for speed.