16.7 m/s
<em>To</em><em> </em><em>deter</em><em>mine</em><em> </em><em>the </em><em>speed</em><em> </em><em>we</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>formula</em><em>:</em><em> </em><em>Dista</em><em>nce</em><em> </em><em>÷</em><em> </em><em>Time</em><em> </em><em>so</em><em>,</em><em> </em><em>5</em><em>0</em><em> </em><em>÷</em><em> </em><em>3</em><em> </em><em>=</em><em> </em><em>1</em><em>6</em><em>.</em><em>6</em><em>6</em><em>.</em><em>.</em><em>.</em><em> </em><em>(</em><em> </em><em>rounde</em><em>d</em><em> </em><em>off</em><em> </em><em>to</em><em> </em><em>1</em><em>.</em><em>d</em><em>.</em><em>p</em><em> </em><em>is</em><em> </em><em>1</em><em>6</em><em>.</em><em>7</em><em>)</em><em>.</em>
Answer:
<em>The 150 lb woman at 30 mph would experience the greatest force of impact in a sudden collision.</em>
Explanation:
<u>Momentum
</u>
The force of impact exerted on an moving object that suddenly stops or changes its movement is measures by the physics magnitude called Impulse, which can be computed with the formula

Where F is the force and t is the time that force acts to produce the impact on the object. The impulse is also defined as the change in the momentum of the object:

Or equivalently

The question describes four situations where different persons and object suffer impact that make them stop from their moving state. Thus
and the impulse is

We are only interested in the relative magnitudes of each case, so we won't consider the sign in the calculations
Case 1: A 200 lb. man traveling 20 mph

Case 2: A 150 lb. woman at 30 mph

Case 3: A 35 lb. infant at 75 mph

Case 4: A 75 lb. child at 55 mph

By comparing the results, we can see that the 150 lb woman at 30 mph would experience the greatest force of impact in a sudden collision.
Impulse is the interval of a force ,f,over the time interval ,t,for which it acts
Formula p=f t
Momentum is the quantity of motion of a moving body measured as a product of its mass and velocity
Formula p=m v
P=momentum
M=mass
V=velocity
Wait I don't see the question... Can you comment me in it so I can see? I think it's a glitch or something..
Answer:
The velocity with which the ball strikes the ground = -5.7 m/s
Explanation:
To find the velocity with which the tennis ball hits the ground, we only need to worry about what happens up to that point. We can ignore the rebound for this part. Given:
d = -1.65
a = -9.8
vi = 0
vf = ?

*Keep in mind that the square root gives us two answers, a positve and a negative one. We use the negative one here because the final speed is downwards and the question says down is negative.