Answer: 
Explanation:Bond energy of H-H is 436.4 kJ/mole
Bond energy of C-H is 414 kJ/mol
Bond energy of C=C is 620 kJ/mol
Bond energy of C≡C is 835 kJ/mol

= {1B.E(C≡C)+2B.E(C-H) +1B.E(H-H)} - {1B.E(C=C)+4B.E(C-H)}


Answer:
The pressure is 5.62 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= ?
- V= 5.005 L
- n= 1.255 mol
- R= 0.082

- T= 273.5 K
Replacing:
P* 5.005 L= 1.255 mol* 0.082
*273.5 K
Solving:

P= 5.62 atm
<u><em>The pressure is 5.62 atm.</em></u>
Leading up to this, calcium gave up 2 valence electrons and thus was denoted as a cation. These 2 electrons were transferred to bromine, which received an overall negative charge because of the addition of 2 valence electrons in its valence shell, and thus formed a negatively charged ion, an anion.
Both formed an ionic bond, due to the electrostatic charge of attraction between the 2 oppositely charged ions. If many ions of Ca and Br are present and numerous ionic bonds have formed it will undergo an arrangement which is that of an ionic lattice, type of structure.
Answer:
The answer is pyruvate → lactate
Explanation:
In the reaction of glycolysis, glucose breaks down to form pyruvate yielding ATP and NADH.
Under or during strenuous exercise, which is an anaerobic condition, lactate is formed by the reoxidization of NADH and the conversion of pyruvate to lactate.
Answer:

Explanation:
Hello,
In this case the undergoing chemical reaction is shown on the attached picture whereas cyclohexanol is converted into cyclohexene and water by the dehydrating effect of the sulfuric acid. Thus, for the starting 3 mL of cyclohexanol, the following stoichiometric proportional factor is applied in order to find the theoretical yield of cyclohexene in moles:

Besides, the mass could be computed as well by using the molar mass of cyclohexene:

Even thought, the volume could be also computed by using its density:

Best regards.