Answer:
4g/mol
Explanation:
Firstly, we can get the number of moles of the gas present using the ideal gas equation.
PV = nRT
Here:
P = 886 torr
V = 224ml = 224/1000 = 0.224L
T = 55 degrees celcius= 55+ 273.15 = 328.15K
R = molar gas constant = 62.36 L⋅Torr⋅K−1⋅mol−1
n = PV/RT
n = (886 * 0.224)/(62.36 * 328.15)
n = 0.009698469964 mole
Now to get the molar mass, this is mathematically equal to the mass divided by the number of moles. We have the mass and the number of moles, remaining only the molar mass.
First, we convert the mass to g and that is 38.8/1000 = 0.0388
The molar mass is thus 0.0388/0.009698469964 = 4g/mol
57 - True
58 - True
59 - True
60 - Fe and O
61 - Sr and F
62 - <span>both ionic and covalent bonds
Hope this helps!</span>
The correct option is this: EFFUSION BECAUSE THERE IS A MOVEMENT OF A GAS THROUGH A SMALL OPENING INTO A LARGER VOLUME.
Effusion refers to the movement of gas particles through a small hole. According to Graham's law, the effusion rate of a gas is inversely proportional to the square root of the mass of its particles.
Lymphocytes and the other formed elements are developed from pluripotent stem cells. The pluripotent stem cells generate myeloid stem cells and lymphoid stem cells. Myeloid cells start and complete their development in red bone marrow and give rise to red blood cells, platelets, eosinophils, basophils, neutrophils, and monocytes. Lymphoid stem cells begin development in the red bone marrow, but some are completed in the lymphatic tissues, where they give rise to lymphocytes. The B cell lymphocytes begin and finish in the red bone marrow and the T cell lymphocytes begin in the red bone marrow, but they mature in the thymus.