The (2) calcium atom, because when looking at the periodic table, we see that the calcium atom is in a location where according to the periodic table, has the lower electronegativities in respect to the other three choices. We see that it also has a lower electronegativity value than the others. Electronegativity is the attraction constant for the electrons in a chemical bond. The higher the electronegativity, the higher the attraction of the electrons. Fluorine has the highest electronegativity with 4.0.
The number of protons never changes in an atom. More electrons means a negative charge and fewer means a positive charge. Once an atom has an electrical charge it is called an ion. In an ion the atomic number and atomic mass do not change from the original.
The balanced reaction is:
MnO2<span>(s) + 4HCl(aq) → Cl2(g) + MnCl2(aq) + 2H2O(l)
</span>
We are given the amount of hydrochloric acid to be used for the reaction. This will be the starting point for the calculations.
1.82 mol HCl ( 1 mol Cl2 / 4 mol HCl) = 0.46 mol Cl2
Therefore, 0.46 mol of chlorine gas is produced for the reaction of hydrochloric acid and manganese oxide.
Answer:
The rate law for second order unimolecular irreversible reaction is
![\frac{1}{[A]} = k.t + \frac{1}{[A]_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%20k.t%20%2B%20%5Cfrac%7B1%7D%7B%5BA%5D_%7B0%7D%20%7D)
Explanation:
A second order unimolecular irreversible reaction is
2A → B
Thus the rate of the reaction is
![v = -\frac{1}{2}.\frac{d[A]}{dt} = k.[A]^{2}](https://tex.z-dn.net/?f=v%20%3D%20-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3D%20k.%5BA%5D%5E%7B2%7D)
rearranging the ecuation
![-\frac{1}{2}.\frac{k}{dt} = \frac{[A]^{2}}{d[A]}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bk%7D%7Bdt%7D%20%3D%20%5Cfrac%7B%5BA%5D%5E%7B2%7D%7D%7Bd%5BA%5D%7D)
Integrating between times 0 to <em>t </em>and between the concentrations of
to <em>[A].</em>
![\int\limits^0_t -\frac{1}{2}.\frac{k}{dt} =\int\limits^A_{0} _A\frac{[A]^{2}}{d[A]}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E0_t%20-%5Cfrac%7B1%7D%7B2%7D.%5Cfrac%7Bk%7D%7Bdt%7D%20%3D%5Cint%5Climits%5EA_%7B0%7D%20_A%5Cfrac%7B%5BA%5D%5E%7B2%7D%7D%7Bd%5BA%5D%7D)
Solving the integral
![\frac{1}{[A]} = k.t + \frac{1}{[A]_{0} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%20%3D%20k.t%20%2B%20%5Cfrac%7B1%7D%7B%5BA%5D_%7B0%7D%20%7D)