private property owners in the United States can restrict public access to their land
Answer:
e. TA>T>Tc
Explanation:
a) In this case, we cannot say for sure QA>QB>QC. This is because the magnitude of the heat flow will depend on the specific heat and the mass of each sample. Due to the equation:

if we did an energy balance of the system, we would get that>
QA+QB+QC=0
For this equation to be true, at least one of the heats must be negative. And one of the heats must be positive.
We don't know either of them, so we cannot determine if this statement is true.
b) We can say for sure that QA<0, because when the two samples get to equilibrum, the temperatrue of A must be smaller than its original temperature. Therefore, it must have lost heat. But we cannot say for sure if QB<0 because sample B could have gained or lost heat during the process, this will depend on the equilibrium temperature, which we don't know. So we cannot say for sure this option is correct.
c) In this case we don't know for sure if the equilibrium temperature will be greater or smaller than TB. This will depend on the mass and specific heat of the samples, just line in part a.
d) is not complete
e) We know for sure that A must have lost heat, so its equilibrium temperature must be smaller than it's original temperature. We know that C must have gained heat, therefore it's equilibrium temperature must be greater than it's original temperature, so TA>T>Tc must be true.
Answer:
S = 2 * pi * 1 m = 6.28 m = distance traveled
V = S / T or T = S / V = 6.28 m / 5 m/s = 1.26 sec
This will be the time for 1 revolution or the period of the motion.
Answer:
4.3 * 10 N
Explanation:
To calculate torque, we multiply the distance from the pivot by the perpendicular (the part of the force that acts at right angles to the displacement vector) component of the force to the displacement vector from the pivot.
torque = distance from pivot * perpendicular force
170 Nm= 0.4 m * F
F = 425 N = 4.3 * 10 N rounded off to two significant figures
Answer:
A
Explanation:
1. When the block moves across a table top, F(pulling) = - F(frictional).
Sum of this forces = 0, so the block moves with uniform speed.
2. When the block is pulled on top of the table covered with beads
F(pulling) > - F(frictional).
So, the sum of forces (∑F) is a number that is more than 0 and directed to the direction of movement.
So, a = ∑F / m is positive and constant. Speed is increasing because
v(t) = v(0)+at
a is constant and directed forward.
That means a is acceleration, and constant.