Answer:
True
Explanation:
i searched it up and well this thing is making me do it up till 20 characters long so yea
Answer:
The strength of the gravitational force between two objects depends on two factors, mass and distance. the force of gravity the masses exert on each other. ... increases, the force of gravity decreases. If the distance is doubled, the force of gravity is one-fourth as strong as before.
Answer:
Lightening of the table lamp
Explanation:
Energy has a different form of energy. In physics, the capacity of the form of energy is work. The energy can exist in the form of thermal, potential, kinetic, chemical and electrical, and nuclear. There are other forms of energy such as work and heat.
The energy is designated according to the nature of the objects. So that when heat transferred it has been changed into thermal. All the forms of energy are related to the motion of an object. Energy can neither destroyed or created.
Answer:
Explanation:
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>FALSE. </em>The specific lines are obseved because of the energy level transition of an electron in an specific level to another level of energy.
The energies of atoms are not quantized. <em>FALSE. </em>The energies of the atoms are in specific levels.
When an electron moves from one energy level to another during absorption, a specific wavelength of light (with specific energy) is emitted. <em>FALSE. </em>During absorption, a specific wavelength of light is absorbed, not emmited.
Electrons are not allowed "in between" quantized energy levels, and, thus, only specific lines are observed. <em>TRUE. </em>Again, you can observe just the transition due the change of energy of an electron in the quantized energy level
When an electron moves from one energy level to another during emission, a specific wavelength of light (with specific energy) is emitted. <em>TRUE. </em>The electron decreases its energy releasing a specific wavelength of light.
The energies of atoms are quantized. <em>TRUE. </em>In fact, the energy of all subatomic, atomic, and molecular particles is quantized.