Partial pressure (N2) = mole fraction * total pressure
{ 1 mole of any ideal gas occupy same volume of 1 mole of any other ideal gas under same condition of temperature and pressure so mole fraction in the sample is simply 78.08% = 0.7808 this is because equal volume of each gas has equal moles
partial pressure N2 = 0.7808 * 760 .0
partial pressure = 593.4 mmhg ( 1 torr = 1mmhg )
Bromine has the following electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5. categorize the electrons in each. Answer for video: The video player is loaded.
On the periodic chart, row 5, column 7, is where you can find a chemical element that was identified in 1811. It has a proton count of 53 and an atomic mass of 126.9. Iodine's atom, then, contains 53 electrons in the following configuration: 1s2, 2s2, 2p6, 3s2, 3d10, 4p6, 5s2, 4d10, 5p5 (Kr 4d10 5s2 5p5). Cu Z = 29 has an electrical arrangement of 1s2 2s2 2p6 3s2 3p6 3d10 4s1. Copper (Co) has the following electron configuration: 1s2 2s2 2p6 3s3 3p6 4s2 3d7. If a chemist were to refer to Copper by its subshell, they would abbreviate this notation to "3d7."
To learn more about electrons please click on below link
brainly.com/question/1255220
#SPJ4
Answer: A
1.68 N
Explanation:
F = ma = 0.024(70.0) = 1.68 N
There are 1,000 milligrams (mg) in one gram:
In 10 grams, there are 10 x 1,000 = 10,000 milligrams. This is a lethal dose of caffeine.
There are 4.05 mg/oz (milligrams/ounce) of caffeine in the soda.
In a 12 ounce can, there are 4.05 x 12 = 48.6 milligrams.
How many sodas would it take to kill you?
To find this, we divide the lethal dose amount (10,000 mg) by the amount of caffeine per can (48.6 mg).
10,000 ÷ 48.6 = 205.76.
Since 205 cans is not quite 10,000 mg, technically it would take 206 cans of soda to consume a lethal dose of caffeine.
Pb(C₂H₃O₂)₂ is lead(II) acetate
Pb(C₂H₃O₂)₂ --> Pb²⁺ + C₂H₃O₂²⁻
Lead(II) acetate ionizes in aqueous solution to form lead cation and acetate anion.
The chemical formula for the anion present in the aqueous solution of Pb(C₂H₃O₂)₂ is C₂H₃O₂²⁻
C₂H₃O₂²⁻ or CH₃COO⁻ is called the acetate ion.
Therefore, the correct answer is C₂H₃O₂²⁻