The amount of energy in molecules of matter determines the state of matter. Matter can exist in one of several different states, including a gas, liquid, or solid state. ... A gas is a state of matter in which atoms or molecules have enough energy to move freely.
<h3><u>Answer;</u></h3>
Directly proportional
<h3><u>Explanation;</u></h3>
- <em><u>Concentration is one of the factors that determine the rate of a reaction. Reaction rates increases with increase in the concentration of the reactants, which means they are directly proportional.</u></em>
- An increase in the concentration of reactants produces more collisions and thus increasing the rate at which the reaction is taking place. Therefore, <u>Increasing the concentration of a reactant increases the frequency of collisions between reactants and will cause an increase in the rate of reaction.</u>
<span>electron, I believe.
</span>
Answer:
C) 712 KJ/mol
Explanation:
- ΔH°r = Σ Eb broken - Σ Eb formed
- 1/2Br2(g) + 3/2F2(g) → BrF3(g)
∴ ΔH°r = - 384 KJ/mol
∴ Br2 Eb = 193 KJ/mol
∴ F2 Eb = 154 KJ/mol
⇒ Σ Eb broken = (1/2)(Br-Br) + (3/2)(F-F)
⇒ Σ Eb broken = (1/2)(193 KJ/mol) + (3/2)(154 KJ/mol) = 327.5 KJ/mol
∴ Eb formed: Br-F
⇒ Σ Eb formed (Br-F) = Σ Eb broken - ΔH°r
⇒ Eb (Br-F) = 327.5 KJ/mol - ( - 384 KJ/mol )
⇒ Eb Br-F = 327.5 KJ/mol + 384 KJ/mol = 711.5 KJ/mol ≅ 712 KJ/mol