To determine whether a compound is polar or nonpolar you have to take into account:
1) formation of dipoles due to the difference in electronegativities of the atoms
2) shape of the molecule to conclude whether there is a net dipole momentum.
You already, likely, know that the electronegativities of H and O are significatively different, being O more electronegative thatn H. So, you can conclude easilty that the electrons are atracted more by O than by H, thus creating two dipoles H→O
Regarding the shape, it may appear that the molecule is symmetrical, which would lead to the cancellation of the two dipoles. But that is not the true. The H2O2 is not symmetrical.
The lewis structure just show this shape
** **
H - O - O - H
** **
which is what may induce to think that the molecule is symmetrical, leading to the misconception that it is nonpolar.
But in a three dimensional arrangement you could see that the hydrogens are placed in non symmetrical positions, which leads to the formation of a net dipole momentum, and thus to a polar molecule.
The fact that H2O2 is a polar compound is the reason why it can be mixed with water and the H2O2 that you buy in the pharmacy is normally a solution in water.
So, the hydrogen peroxide is polar because the hydrogens are not placed symmetrically in the molecule, which result in a net dipole momentum.
Q: A
according to this formula, we can get the mole fraction of water (n):
P(solu) = n Pv(water)
when we have Pv(solu) = 22.8 and Pv(water) = 23.8 so by substitution:
22.8 = n * 23.8
n= 0.958
- we need to get the moles of glucose:
moles of water = 500 g(mass weight) / 18 (molar weight)= 27.7 mol
n = moles of water / ( moles of water + moles of glucose)
0.958 = 27.7 / ( 27.7+ moles of glucose)
0.958 moles of glucose + 26.5 = 27.7
0.968 moles of glucose = 1.2
moles of glucose = 1.253 mol
∴ the mass of glucose = no.of glucose moles x molar mass
= 1.253 x 180 = 225.5 g
Q: B
here we also need to get n (mole fraction of water )by using this formula:
Pv(solu) = n Pv(water)
when we have Pv(solu)=132 & Pv(water)=150 so, by substition:
132= n * 150
n = 0.88
so, mole fraction of solution = 1 - 0.88 = 0.12
and we can get after that the moles of water = (mass weight / molar mass)
- no.moles of water = 85 g / 18 g/mol = 4.7 moles
- total moles in solution = moles of water / moles fraction of water
= 4.7 / 0.88 = 5.34 moles
∴ moles of the solution = total moles in solu - moles of water
= 5.34 - 4.7 = 0.64 moles solute
∴ the molar mass of the solute = mass weight of solute / no.of moles of solute
= 53.8 / 0.64 = 84 g/mole
Q: C
moles of urea (NH2)2 CO = mass weight / molar mass
= 4.49 g / 60 g /mol
= 0.07 mol
moles of methanol = mass weight / molar mass
= 39.9 g / 32 g/mol = 1.25 mol
moles fraction of methanol = moles of methanol / (moles of methanol + moles of urea )
moles fraction of methanol = 1.25 / ( 1.25+0.07) = 0.95
by substitution in Pv formula we will be able to get the vapour pressure of the solu :
Pv(solu) = n P°v
Pv(solu) = 0.95 * 89 mm Hg
∴Pv(solu) = 84.55 mmHg
Experiments test the scientists' ideas.
Aspartame (C₁₄H₁₈N₂O₅) is a solid used as an artificial sweetener. its combustion produces carbon dioxide gas, liquid water, and nitrogen gas
C₁₄H₁₈N₂O₅ + 16O₂-----> 14CO₂ + 9H₂O + N₂.
As it can be seen from the equation, that the coefficient of nitrogen gas in the balanced equation for the reaction is 1.
So the answer here is 1 only that is coefficient of nitrogen gas in the balanced equation for the reaction is 1.