Usually (ignoring transition metals, as they kinda get trickier), the element's valency can be found out by its group (column) number. Usually, we ignore the transition metal block while counting these columns, so Aluminium is in group 3, for example. Since Aluminium is in group 3, it has 3 valence electrons.
The molarity of (HNO₃) that was used if 2.00 L must be used to prepare 4.5 L of a 0.25M HNO₃ solution is 0.563 M
<u><em>calculation</em></u>
This is calculated usind M₁V₁=M₂V₂ formula
where,
M₁( molarity ₁) = ?
V₁( volume ₁) = 2.00 L
M₁ (molarity ₂) = 0.25M
V₂( volume₂) = 4.5 L
make M₁ the subject of the formula by diving both side of the formula by V₁
M₁ is therefore = M₂V₂/V₁
M₁ =[ (0.25 M x 4.5 L) / 2.00 L ] =0.563 M
Answer:
Explanation:
Assume we have 100g of this substance. That means we would have 20.24g of Cl and 79.76g of Al. Now we can find how many moles of each we have:
= 2.25 mol of chlorine
= 0.750 mol of Al.
To form a integer ratio, do 2.25/0.75 = 2.99999 ~= 3.
So the ratio is essentially Al : Cl => 1 : 3. To the compound is possibly
.
However, it says it has a molar mass of 266.64 g/mol, and since AlCl3 has a molar mass of 133.32, it must be
.
Actually this molecule isn't exactly AlCl3 (which is ionic). Al2Cl6 forms a banana bond where Cl acts as a hapto-2 ligand. But that's a bit advanced. All you need to know is X = Al2Cl6
No... From blossom. Is your answer