<h3>
Answer:</h3>
5.71 × 10² nm
<h3>
Explanation:</h3>
The product of wavelength and frequency of a wave gives the speed of the wave.
Therefore;
Velocity of wave = Wavelength × Frequency
c = f ×λ
In our case;
Frequency = 5.25 × 10^14 Hz
Speed of light = 2.998 × 10^8m/s
But;
λ = c ÷ f
= 2.998 × 10^8m/s ÷ 5.25 × 10^14 Hz
= 5.71 × 10^-7 m
But; 1 M = 10^9 nm
Therefore;
wavelength = 5.71 × 10^-7 × 10^9
= 5.71 × 10² nm
The wavelength of light wave 5.71 × 10² nm
Answer: through your diet
Explanation:
As per the Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
Hence, according to this law the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
..........(1)
..............(2)
The final reaction is as follows:
.............(3)
Therefore, adding (1) and (2) we get the final equation (3) and value of
at 298 K will be as follows.
=
+
= -314 kJ + (-80) kJ
= -394 kJ
Thus, we can conclude that
at 298 K for the given process is -394 kJ.
Particle accelerators is your answer
The molecules or atoms that are formed by gain or loss of one or more valence electrons are said to be ions.
When atom loss one or more valence electrons, results in formation of cation whereas when atom gain one or more valence electrons, then formation of anion occurs. Cations carry positive charge and anions carry negative charge.
In general, cations are smaller than the neutral atoms from which they are formed and anions are larger than the neutral atoms.
As cations are smaller than the related neutral atoms because the valence electrons are lost which are farthest away from the nucleus. After that, taking more electrons distant from the cation results in reduction of radius of the ion.
Thus, aluminium cation consist of few electrons which results in fewer occupied energy levels by the electrons further results in reduction of radius i.e. smaller size.
Hence, given statement is true i.e. aluminium atom is larger than the aluminium cation as cation has fewer occupied energy levels.