I need help to I have a test and I need help to
Answer:
13.5
Explanation:
Mass: 5kg
Initial Velocity: -15
Final Velocity: 12
Force: 10
We can use the equation: Vf = Vi + at
We need to find acceleration, and we can use the equation, F=ma,
We have mass and the force so it would look like this, 10=5a, and 5 times 2 would equal 10, so acceleration would be 2.
Now we have all the variables to find time.
Back to Vf = Vi + at, plug the numbers in, 12 = -15 + 2(t)
Plugging them in into desmos gives 13.5 for time.
Answer:
We conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Explanation:
Given
To determine
Mass m = ?
Important Tip:
-
The mass of a rock can be found using the formula F = ma
Using the formula

where
- a is the acceleration (m/s²)
now substituting F = 500, and a = 75 m/s² in the formula


switch sides

Divide both sides by 75

simplify

kg
Therefore, we conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Answer:
3.32 m/s
Explanation:
From the law of conservation of energy, the sum of mechanical and kinetic energy should be equal to the 10 J given. Potential energy is given by mgh where m is mass, g is acceleration due to gravity and h is the height. For this case,
and l is string length, given as 2 m, \theta is given as 50 degrees. Kinetic energy is given by
and it is this velocity that is unknown.

-- Bob covered a distance of (32m + 45m) = 77 meters.
-- His displacement is the straight-line distance and direction
from his starting point to his ending point.
The straight-line distance is
D = √(32² + 45²)
D = √(1,024 + 2,025)
D = √3,049 = 55.22 meters
The direction is the angle whose tangent is (32/45) south of east.
tan⁻¹(32/45) = tan⁻¹(0.7111...) = 35.42° south of east.