Answer:
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Explanation:
Given;
mass of the object, m = 2 kg
weigh of the object, W = 20 N
tension on the rope, T = 12 N
The acceleration of the object is calculated by applying Newton's second law of motion as follows;
T = F + W
T = ma + W
ma = T - W
(the negative sign indicates deceleration of the object)
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Answer:
B) No.
Explanation:
Okay,so,
this is equation is y=mx +b
mx represents the slope
and b represents the y-intercept
in order to figure this out you need to plot the y-intercept first
that makes its (0,-6) because the 6 is negative in the equation
4x is also equal to 4/1 since we dont know what x is
we have to do rise over run for this
you go up 4 spots on the y intercept from -6 because 4 is positive
then you go to the right 1 time because 1 is positive.
this leaves you at (1,-2)
so, (2,2) is NOT a solution
Niobium wire with a 2.60 mm diameter has a maximum current capacity of 500 A while still remaining superconducting.
<h3>Describe the present.</h3>
Current is the rate at which charge passes from one point on a circuit to another. In a circuit, a significant current flows when several coulombs or charge pass over the cross section of a wire. When the charge carriers are firmly packed inside the wire, high currents can be generated at low speeds.
<h3>What do current and electron actually mean?</h3>
Electron movement is referred to as electron current. The positive terminal receives electrons that are released by the negative terminal. Traditional current, usually referred to as just current, exhibits behavior consistent with positive charge carriers being the source of current flow. Regular current is received at the positive end and then flows to a negative terminal.
To know more about current visit:
brainly.com/question/15141911
#SPJ4
Answer:
The work flow required by the compressor = 100.67Kj/kg
Explanation:
The solution to this question is obtained from the energy balance where the initial and final specific internal energies and enthalpies are taken from A-17 table from the given temperatures using interpolation .
The work flow can be determined using the equation:
M1h1 + W = Mh2
U1 + P1alph1 + ◇U + Workflow = U2 + P2alpha2
Workflow = P2alpha2 - P1alpha1
Workflow = (h2 -U2) - (h1 - U1)
Workflow = ( 684.344 - 491.153) - ( 322.483 - 229.964)
Workflow = ( 193.191 - 92.519)Kj/kg
Workflow = 100.672Kj/kg