The frequency, f, of a wave is the number of waves passing a point in a certain time. We normally use a time of one second, so this gives frequency the unit hertz (Hz), since one hertz is equal to one wave per second.
Answer: Yes
Explanation:
Velocity
is defined as the distance traveled
in a specific time
:

If you are traveling at
a distance
, then the time it will take you to be at work is:


This means you will make it on time, because this time is less than 0.25 h.
Answer:
25.33 rpm
Explanation:
M = 100 kg
m1 = 22 kg
m2 = 28 kg
m3 = 33 kg
r = 1.60 m
f = 20 rpm
Let the new angular speed in rpm is f'.
According to the law of conservation of angular momentum, when no external torque is applied, then the angular momentum of the system remains constant.
Initial angular momentum = final angular momentum
(1/2 x M x r^2 + m1 x r^2 + m2 x r^2 + m3 x r^2) x ω =
(1/2 x M x r^2 + m1 x r^2 + m3 x r^2 ) x ω'
(1/2 M + m1 + m2 + m3) x 2 x π x f = (1/2 M + m1 + m3) x 2 x π x f'
( 1/2 x 100 + 22 + 28 + 33) x 20 = (1/2 x 100 + 22 + 33) x f'
2660 = 105 x f'
f' = 25.33 rpm
Answer:
Density is an important physical property of matter. It reflects how closely packed the particles of matter are. When particles are packed together more tightly, matter has greater density.
Explanation:
To solve this problem, we will apply the concepts related to the linear deformation of a body given by the relationship between the load applied over a given length, acting by the corresponding area unit and the modulus of elasticity. The mathematical representation of this is given as:

Where,
P = Axial Load
l = Gage length
A = Cross-sectional Area
E = Modulus of Elasticity
Our values are given as,
l = 3.5m
D = 0.028m

E = 200GPa

Replacing we have,




Therefore the change in length is 1.93mm